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In this paper we review the models and their parameters to describe the relative permittivity,

bandgap, impact ionization, mobility, charge carrier recombination/effective masses and

incomplete dopand ionization of 4H silicon carbide in computer simulations. We aim to

lower the entrance barrier for newcomers and provide a critical evaluation of the status quo

to identify shortcomings and guide future research. The review reveals a rich set of often

diverging values in literature based on a variety of calculation and measurement methods.

Although research for all the selected parameters is still active, we show that sometimes

old values or those determined for other kinds of silicon carbide are commonly used.

Keywords: 4H-SiC, TCAD simulations, simulation parameters, silicon carbide

1

mailto:juergen.burin@oeaw.ac.at


I. IMPACT IONIZATION

In high electric fields, charge carriers are able to pick up enough kinetic energy to create an

additional electron-hole pair, which is called impact ionization. This effect is sometimes delib-

erately used, e.g., in avalanche diodes, to increase the responsiveness1 but often is an undesired

effect that leads to breakdown and the destruction of the device. Consequently, impact ionization

simulations are crucial to predict the safe operation regions of a device. In TCAD tools impact

ionization is modeled as a (electric field dependent) multiplicative factor that denotes the increase

of charge carriers per unit distance.

A. Theory

The impact ionization is described by the charge carrier generation rate2,3

GII =
1
q

(
αJn +βJp

)
=

1
q
(αnvn +β pvp)

with n resp. p the amount of electron resp. holes, vn resp. vp their velocity and Jn resp. Jp the

electron resp. hole current. The impact ionization coefficients for electrons (α) and holes (β )

represent the number of secondary carriers a single charge carrier generates per cm in an electric

field F , i.e.,1

α =
1
n

dn
dx

cm−1 , β =
1
p

dp
dx

cm−1 .

Many models to describe α and β were proposed. We will provide a short introduction to the

topic, whereat more detailed descriptions are available in literature1,4–7. One of the earliest models

is the still very popular empirical Chynoweth’s law8,9

α,β (F) = a exp
[
− b

F

]
, (1)

often also called Van Overstraeten-de Man model10. This empirical fitting was a necessity at the

time of its publication because a physical explanation was only available for strong electric fields

as11

α,β (F) =
eF
Ei

exp
[
−

3EpEi

(eFλ )2

]
.

This changed with Shockley 12 who modeled the impact ionization coefficient by

α,β (F) =
eF
Ei

exp
[
− Ei

eFλ

]
, (2)
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In this case, e denotes the electron charge, λ the mean free path and Ei the ionization energy, i.e.,

the energy to create an electron-hole pair. The prefactor is the inverse of the length required to gain

the ionization energy, i.e., how often per unit length this energy is reached, while the exponential

term denotes the chance of doing that without collisions. This model is often called Shockley’s

"lucky electron"13. In Lackner 14 the close relationship between Eq. (1) and Eq. (2), which can be

easily retraced by setting a = eF/Ei and b = Ei/eλ , is highlighted, leading to a physically based

calculation of parameters a and b. The author suggests an additional scaling factor, depending

on the electric field and the parameter b for both α and β , to cover the parameter variations with

changing electric field strength.

The low- and high-field cases were finally combined in Baraff’s theory15, which expresses

α,β ∝ exp[−b/F ] for low fields and α,β ∝ exp[−c/F2] for high ones. It was later extended by

Thornber 16 to the expression4

α,β (F) =
eF
⟨Ei⟩

exp
[
− ⟨Ei⟩
[(eFλ )2/3Ep]+ eFλ +EkBT

]
, (3)

with ⟨Ei⟩ the effective ionization threshold4, Ep the optical phonon energy and EkBT a temperature

contribution that is often neglected in the literature. Konstantinov et al. 13 even only used the high-

field part for the electrons and dropped the factor 3Ep for the holes in the equation presented in

the paper. We assume a typographical error as the division sign is still visible. For the ionization

energy Ei originally a value of 3/2Eg (Eg the band gap; see ??) was assumed, which represents

the ideal case17. Recent measurements, however, revealed for 4H-SiC values between 7.28 and

8.6 eV18.

Since Baraff’s theory was not able to satisfy all demands19, Okuto and Crowell 20 extended

Chynoweth’s law by adding the electric field as a multiplicative factor, an exponential parameter

m and a temperature dependency via c and d. The overall fitting model has the form

α,β (F) = a{1+ c(T −300)} Fn exp
[
−
(

b{1+d(T −300)}
F

)m]
(4)

where T denotes the temperature in Kelvin. In all investigated publications n = 0 so we will

not consider this parameter any further, leading to a simplified model that is often referred to as

Selberherr model5.

More advanced models were also proposed, which are, however, not yet used in TCAD simula-

tions. These include a more sophisticated temperature dependency in Eq. (4)21 and models based

on multi-stage22 and inelastic collision events23. Other popular methods to investigate the effects
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of impact ionization are Monte Carlo simulations24–34, non-localized models35,36 and the impact

of defects37 in the presence of a magnetic field38,39. Some researchers40–42 even combine α and

β to an effective coefficient and model it by a power law, i.e., α,β ∝ En, to achieve an analytic

expression suitable for calculations.

The impact ionization is anisotropic, meaning that the breakdown field in ⟨1120⟩ is about three

quarters of the one in ⟨0001⟩ direction43. For that reason the impact ionization coefficients have

been determined parallel and perpendicular to the c-axis. These can be combined, using a formal-

ism introduced by Hatakeyama 44 , to achieve suitable amplification factors for any desired lattice

direction. Jin et al. 45 reused the parameter values but introduced a new approach to calculate

the "driving force" by considering also the field direction for constant carrier temperature. Nida

and Grossner 46 adapted the field strength to an effective F∗ = (m/m∥)
1/2F , with m resp m∥ the

effective masses (see ??.

To depict the changing behavior with temperature either the built-in parameters, as is the case

for the Okuto-Crowell model (see Eq. (4)), or a multiplicative factor47

γ =
tanh

(
h̄ωOP
2kB T0

)
tanh

(
h̄ωOP

2kB TL

) (5)

to scale the parameters a and b of Eq. (1) is used44,48–50 with T0 a reference temperature (often

300 K), TL the lattice temperature and ωOP the optical phonon energy. We are very confident that

the latter corresponds to the longitudinal optical phonon energy ωLO (see ??) as their respective

values match well. Hatakeyama 44 , however, pointed out that for a good fit ωOP = 190meV had

to be used, which contradicts experimental results of ωLO = 120meV. Niwa, Suda, and Kimoto 51

use a polynomial of degree two to scale the parameters while Bartsch, Schörner, and Dohnke 40

utilize the ratio T/300K for this purpose. In contrast, Hamad et al. 52 explicitly present parameter

values for different temperatures. Nida and Grossner 46 scaled the mean free path by
√

γ and the

ionization energy by the ratio of the bandgap at temperature TL and at 300 K.

B. Results

To measure the impact ionization coefficients an equal amount of charge carriers is generated

in a space charge region, either by (pulsed) electron (electron beam induced current (EBIC))53

or optical beams (optical beam induced current (OBIC))13,51,52,54–60. Defects have a significant

impact on the coefficients such that EBIC is used to extract parameters at defect-free regions61.
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The charge carrier generation is executed at varying field strengths. Recording the respec-

tive terminal currents enables a comparison against the no-field current and, thus, the determina-

tion of the effective amplification. The readout of the current can be executed in DC mode13,54

(whereat Raghunathan and Baliga 53 state that elimination of leakage current in this case is hard),

AC mode53,57,58 or both combined55,56. Additional challenges are the selection of a suitable test

structure, e.g., p-n/n-p diodes or pnp/npn transistors) and the proper separation of electron and

hole multiplication phenomena, which we will not further cover in this review. Instead we refer

the interested reader to the dedicated literature13,51,57,59,62,63.

Monte Carlo simulations are also used for the investigation of the impact ionization. While

some are able to extract the impact coefficients as the reciprocal of the average distance34,64 oth-

ers solely present simulated values without fitting to any of the earlier presented model24–33,65.

Fitting is, however, crucial to use the results in TCAD simulations tools. For this purpose Ste-

fanakis et al. 66 provides fittings to Monte Carlo simulation25,67,Nouketcha et al. 17 used a ge-

netic algorithm to fit to multiple sources46,54–56,68,69, Nida and Grossner 46 fitted their model to

values from13,44,53,55,68 and Stefanakis et al. 66 achieved a "global fit" in regard to many 4H in-

vestigations13,55,56,58,60,69, but also a 6H one70, and Monte Carlo simulations25,67. Kyuregyan 62

calculated the average of available parameter values without conducting any fitting. According to

the authors this is supposed to remove statistical inaccuracies and uncertainties introduced by the

characterization methods. Even multiple fittings on the same data were executed. Baliga 61 , Baner-

jee 71 , Choi et al. 72 , Sheridan et al. 73 , Zhao et al. 74 , Morisette 75 all used the data from Konstanti-

nov et al. 13 , however, the ones for Sheridan et al. 73 exactly match values achieved for 6H by Ruff,

Mitlehner, and Helbig 70 .
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TABLE I. Parameters for fundamental fittings of the Okuto-Crowell model found in literature. If only a

single value spanning across two columns is presented the crystal direction was not specified.
electron hole

ref. a∥ a⊥ b∥ b⊥ c d m a∥ a⊥ b∥ b⊥ c d m F region

[106 cm−1] [MVcm−1] [10−3] [10−3] [1] [106 cm−1] [MVcm−1] [10−3] [10−3] [1] [MVcm−1]

[Ragh99]53 - - - - 0 0 1 3.09 17.9±0.4 −3.46 0 1 2.5–3.2

[Bert00]76j 0.4 48 15 0 0 1.15 1.8 45 15 0 0 1 -

[Sher00]73dl - - - - 0 0 1 5.18 - 14 - 0 0 1 -

[Mori01]75d - - - - 0 0 1 - - - - 0 0 1 -

[Ng03]56 1.98 9.46 −2.02a 0 1.42 4.38 11.4 −0.913a 0 1.06 1.8–4

[Zhao03]74d 7.26 23.4 0 0 1 6.85 14.1 0 0 1 -

[Hata04]77 176 21 33 17 0 0 1 341 29.6 25 16 0 0 1 2–5

[Choi05]72d 16.5 25.8 0 0 1 5.5 13.5 0 0 1 1.5–5

[Loh08]55 2.78 10.5 0 0 1.37 3.51 10.3 0 0 1.09 1–5

[Loh09]78 - - - - 0 0 1 3.321 10.385 −2.78 0.48k 1.09 1.33–2

[Nguy11]57 0.46 17.8 0 0 1 15.6 17.2 0 0 1 1.5–2.7

[Gree12]63h 0.019 2.888 0 0 4.828 0.06 1.387 0 0 0.96 1.6–4

[Nguy12]58 3.36 22.6 0 0 1 8.5 15.97 0 0 1 1.5–4.8

[Sun12]34 1.803 13.52 0 0 1.2 1.861 9.986 0 0 1.11 1.5–5

[Niwa14]51 8190 39.4 0 0 1 4.513 12.82 0f 0 1 1.4–2.7

[Hama15]52 0.99 12.9 0 0 1 1.61 11.5 0 0 1 2.5–7

[Niwa15]68 0.143 - 4.93 - 0c 0c 2.37 3.14 - 11.8 - 6.3c 1.23c 1.02 1–2.8

[Shar15]79 186 - 28 - 0 0 1 301 - 20.5 - 0 0 1 -

[Kyur16]62i 38.6±15.0 25.6±0.1 0 0 1 5.31±0.30 13.10±0.01 0 0 1 1–5

[Zhan18]80 1.31 13 −1.47 0 1 2.98 13 −1.56 0 1 -

[Bali19]61d 313 34.5 0 0 1 8.07 15 0 0 1 1.1–5

[Zhao19]60 0.339 - 5.15 - 0 0 2.37 3.56 - 11.7 - 6.19 1.15 1.02 1–3.2

[Stef20]59 - 6.4 - 12.5 0 0 1 - 6 - 13.3 0 0 1 1.3–2

[Bane21]71d 100 40.268 0 0 1 41.915 46.428 0 0 1 0.1–1

[Chea21]64g 0.932 7.19 0 0 1.95 1.75 6.56 0 0 1.45 1.6–10

[Stef21]66e 2.8 - 20.7 - −1b −0.29b 1 2.5 - 12.1 - 1.74b 0.59b 1 -

a provided by Cha et al. 81

b provided by Steinmann et al. 82

c different values suggested by Steinmann et al. 82

d values fitted to Konstantinov et al. 13

e values fitted to13,25,55,56,58,60,67,69,70

f temperature dependency stated in the paper that could not be transferred to model formalism
g a and b presumably stated in m−1 and MVm−1 in paper, converted to cm−1 and MVcm−1

h for F > 2.5MVcm−1 the parameters α from Ng et al. 56 are used
i values achieved by averaging of13,51,54–56,63,78,83

j fitted to Nilsson et al. 84

k we changed b = 8.9×106 −4.95×103 T to b = 8.9×106 +4.95×103 T to better match the results in the paper
l same values achieved as 6H investigation by Ruff, Mitlehner, and Helbig 70
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TABLE II. Parameters for fundamental fittings of the Thurnber model found in literature. For EkBT = kBT

this parameter scales with temperature.

electron hole

ref. dir ⟨Ei⟩ λ Ep EkBT ⟨Ei⟩ λ Ep EkBT F region

[eV] [Å] [meV] [meV] [eV] [Å] [meV] [meV] [MVcm−1]

[Kons97]13f ∥ 10 29.9 120 0 7 32.5 120 0 1.5–10

[Nida19]46a ∥ 10.61 27 120 kBT 10.87 39.49 85 kBT 1–10

[Nouk20]17c - 7.5 10 92.5 14 6.62 4.8 9 102 0.9–10

[Stei23]82e - 10.6 27 87 kBT 10.9 80 87 kBT 1–10

a values picked from specified ranges, fitting to13,44,53,55,68

c 3/2Eg instead of ⟨Ei⟩ used in the exponential, fitting to46,54–56,68,69

e initial values taken from Nida and Grossner 46

f linear term in denominator not used for α

A wide range parameters for the Okuto-Crowell (see Table I) and Thornber (see Table II) model

could be identified in literature. We were unable to match the temperature variation of β with

b = 8.9×106−4.95×103T 78 with the data presented in the same publication. We achieved much

better results with d = 8.9× 106 + 4.95× 103T with T the temperature in Kelvin. In Stefanakis

et al. 59 the fitting for α also deviates slightly from the plots in the paper. Due to the minor

deviation we kept the values as they were. In Cheang, Wong, and Teo 64 the values of parameters

a and b are two orders of magnitude too high. We suspect that they are specified in m−1 resp.

MVm−1 although in the paper it is explicitly stated as cm−1 resp. MVcm−1. Despite these

changes we were not able to exactly recreate the plots shown in the paper. We had to exclude the

publication by Ng et al. 83 as no data are shown in the paper and Cheong et al. 85 , Kimoto et al. 86

who only specify that SiC is investigated but not the polytype.

A graphical representation of the models describing the impact ionization coefficient for elec-

trons (see Fig. 1) show a spread of approximately one order of magnitude, whereat the deviations

increase for low fields. For the crystal direction perpendicular to the c-axis much higher values are

determined. This matches qualitatively early estimations, however, the quantities of α⊥/α∥ = 3.5

used by Bakowski, Gustafsson, and Lindefelt 2 , Lades 48 seems to be too low. For low resp. high

fields the fittings of Zhang and You 80 resp. Sharma, Hazdra, and Popelka 79 are too high meaning

that the models have to be handled with care in these regions.

For holes (see Fig. 2) the spread in values is much smaller, especially close to a field strength
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[Kons97]13 ∥ [Ng03]56 [Zhao03]74 [Hata04]77 ⊥ [Hata04]77 ∥

[Choi05]72 [Loh08]55 [Nguy11]57 [Gree12]63 [Nguy12]58

[Sun12]34 [Niwa14]51 [Hama15]52 [Niwa15]68 ∥ [Shar15]79 ∥

[Kyur16]62 [Zhan18]80 [Bali19]61 [Nida19]46 ∥ [Zhao19]60 ∥

[Nouk20]17 [Stef20]59 ⊥ [Bane21]71 [Chea21]64 [Stef21]66 ∥

[Stei23]82

FIG. 1. Impact ionization coefficient α for electrons. Each model is limited to the interval used for charac-

terization. The colors are altered to increase the readability.
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[Kons97]13 ∥ [Ragh99]53 [Sher00]73 ∥ [Ng03]56 [Zhao03]74

[Hata04]77 ⊥ [Hata04]77 ∥ [Choi05]72 [Loh08]55 [Loh09]78

[Nguy11]57 [Gree12]63 [Nguy12]58 [Sun12]34 [Niwa14]51

[Hama15]52 [Niwa15]68 ∥ [Shar15]79 ∥ [Kyur16]62 [Zhan18]80

[Bali19]61 [Nida19]46 ∥ [Zhao19]60 ∥ [Nouk20]17 [Stef20]59 ⊥

[Bane21]71 [Chea21]64 [Stef21]66 ∥ [Stei23]82

FIG. 2. Impact ionization coefficient β for electrons. Each model is limited to the interval used for charac-

terization. The colors are altered to increase the readability.
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[Ragh99]53 ∥ [Cha08]87 fitting to [Ng03]56 [Hata09]44 ∥ [Hata09]44 ⊥
[Loh09]78 [Niwa14]51 [Niwa15]68 [Hama15]52

[Nida19]46 ∥ [Zhao19]60 ∥ [Stei23]82 fit to [Niwa15]68 [Stei23]82 900BV

[Stei23]82 1700BV [Stei23]82 fit to [Stef21]66

FIG. 3. Temperature dependence of the hole impact ionization coefficient. The single models are evaluated

for an electric field of 2 MVcm−1 and are ordered according to their publication date. The colors simply

are used to improve the readability.

around 2MVcm−1. Nevertheless, there are also fittings we want to highlight. The results of

Steinmann et al. 82 are too high possibly correlating to the fitting of a rather high breakdown

voltage. The values from Raghunathan and Baliga 53 are too low, which was attributed to the

direction dependency of α6,76, i.e., that the coefficient in the direction perpendicular to the c-axis

is much stronger. Feng and Zhao 6 thus conclude that the results in53 deviate from practical results

since the focused beam used in the analyses caused them to miss a large share of the intrinsic

defects. Although Fig. 2 supports this statement, the statement that the perpendicular impact

ionization of holes is a lot stronger, could not be confirmed. The results suggest rather β⊥ = β∥,

which was also used for 6H2. Finally, the fittings by Green et al. 63 show a significantly slower

increase with field than all other models.

Important for TCAD simulations is also the temperature dependency of the impact ionization

coefficients. For holes (see Fig. 3) all models predict a decreasing value, which matches the reports

of increasing breakdown voltage with increasing temperature. Hatakeyama 44 uses the tempera-

ture scaling shown in Eq. (5) (multiplication with γ), which is also used in Lades 48 , Schröder 88 .

Clearly visible is the decline of β with increasing temperature. Steinmann et al. 82 proposed two
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[Cha08]87 fit to [Ng03]56 [Hama15]52 [Zhan18]80 [Nida19]46 ∥
[Stei23]82 fit to [Stef21]66 [Stei23]82 fit to [Niwa15]68 [Stei23]82 900BV [Stei23]82 1700BV

FIG. 4. Temperature dependence of the electron impact ionization coefficient. The single models are

evaluated for an electric field of 3.33 MVcm−1 and are ordered according to their publication date. The

colors simply are used to improve the readability.

fittings for two different breakdown voltages of the investigated device, i.e., 900 V and 1700 V.

For electrons (see Fig. 4) the results are quite inconclusive. Some models even propose an

increase of α with temperature. This is, however, compensated by the decrease in β with increas-

ing temperature due to the relatively small variations of α compared to β (linear vs. logarithmic

y-axis).

C. Discussion

The majority of the currently utilized impact ionization coefficients are based on 4H measure-

ments (see Fig. 5). Care has to be taken especially for publications prior to the year 2000, as those

often are based on 6H2,70,89,90. These outdated results have later found their way in various pub-

lications7,48,91–93. In early publications2 6H was still used because 4H values were not available

or simply74,94 because the early available fittings from Konstantinov et al. 54 , Raghunathan and

Baliga 69 deviated significantly. Based on the results from Bakowski, Gustafsson, and Lindefelt 2

Lades 48 turned these further upside down by calculating values at 273 K and introducing a typo-

graphical for the hole coefficient a which was stated as 2.24×106 instead of 3.24×106. We found

more such issues, which we summarize in ??.

The most influential publications are arguably by Raghunathan and Baliga 53,69 and Hatakeyama

et al. 77 . However, twelve investigations in the last decade reveal that this is still an active field
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Okuto Crowell (a⊥,a∥/b⊥,b∥/m︸ ︷︷ ︸
electron

| a⊥,a∥/b⊥,b∥/m︸ ︷︷ ︸
hole

)

Kyuregyan and Yurkov

[Kyur89]89 ( 457 / 52.4 / 1 | 5.13 / 15.7 / 1 )
[Ioff23]95 ( 457 / 52.4 / 1 | 5.13 / 15.7 / 1 )

Trew, Yan, and Mock

[Trew91]90 ( 0.046 / 12 / 1 | 4.65 / 12 / 1 )
[Wrig96]91 ( 0.046 / 12 / 1 | 4.65 / 12 / 1 )

[Wrig98]92 ( 0.046 / 12 / 1 | 4.65 / 12 / 1 )
[Bhat05]93 ( 0.046 / 12 / 1 | 4.65 / 12 / 1 )

Bakowski, Gustafsson, and Lindefelt

[Bako97]2 ( 1.41 , 4.95 / 2.58 / 1 | 21.6 , 21.6 / 19 / 1 )
[Lade00]48 ( 3.44 / 2.58 / 1 | 32.4 / 19 / 1 )

[Ayal04]49 ( 3.44 / 25.8 / 1 | 3.5 / 17 / 1 )
[Trip19]96 ( 3.44 / 25.8 / 1 | 3.5 / 17 / 1 )

[Schr06]88 ( 3.44 / 2.58 / 1 | 32.4 / 19 / 1 )

Raghunathan and Baliga

[Ragh97]69 ( - / - / - | 3.5 / 17 / 1 )
[Shah98]97 ( 1.66 / 12.73 / 1 | 3.5 / 17 / 1 )
[Nall99]50 ( 2.5 / 14.8 / 1 | 2.5 / 14.8 / 1 )
[Ayal04]49 ( 3.44 / 25.8 / 1 | 3.5 / 17 / 1 )

[Trip19]96 ( 3.44 / 25.8 / 1 | 3.5 / 17 / 1 )

Raghunathan and Baliga

[Ragh99]53 ( - / - / - | 3.09 / 17.9 / 1 )
[Adac05]1 ( - / - / - | 3.25 / 17.9 / 1 )
[Bali06]98 ( - / - / - | 3.25 / 17.5 / 1 )
[Pezz13]99 ( 0.25 / 18.4 / 1 | 3.25 / 17.1 / 1 )
[Das15]100 ( 0.325 / 17.1 / 1 | 3.25 / 17.1 / 1 )

Morisette

[Mori01]75 ( - / - / - | - / - / - )
[Kimo14a]101 ( 1.69 / 9.69 / 1.6 | 3.32 / 10.7 / 1.1 )

[Dena22]102 ( 1.69 / 9.69 / 1.6 | 3.32 / 10.7 / 1.1 )

Ng et al.

[Ng03]56 ( 1.98 / 9.46 / 1.42 | 4.38 / 11.4 / 1.06 )
[Loh07]103 ( - / - / - | - / - / - )
[Cha08a]81 ( 1.98 / 9.46 / 1.42 | 4.38 / 11.4 / 1.06 )

[Cha08]87 ( 1.98 / 9.46 / 1.42 | 4.38 / 11.4 / 1.06 )
[Loh08a]104 ( - / - / - | - / - / - )

Hatakeyama et al.

[Hata04]77 ( 21 , 176 / 17 , 33 / 1 | 29.6 , 341 / 16 , 25 / 1 )
[Hata04a]105 ( 21 , 176 / 17 , 33 / 1 | 29.6 , 341 / 16 , 25 / 1 )
[Hata05]106 ( 21 , 176 / 17 , 33 / 1 | 29.6 , 341 / 16 , 25 / 1 )

[Ivan09]107 ( - / - / - | - / 25 / - )
[Loph18]108 ( 21 , 176 / 17 , 33 / 1 | 29.6 , 341 / 16 , 25 / 1 )
[Jin24]45 ( 21 , 176 / 17 , 33 / 1 | - / - / - )

[Hata09]44 ( 21 , 176 / 17 , 33 / 1 | 29.6 , 341 / 16 , 25 / 1 )
[Hata13]109 ( 21 , 176 / 17 , 33 / 1 | 29.6 , 341 / 16 , 25 / 1 )

[Naug17]110 ( 21 , 176 / 17 , 33 / 1 | 29.6 , 341 / 16 , 25 / 1 )
[Sole19]111 ( 210 , 176 / 17 , 33.3 / 1 | 296 , 341 / 16 , 25 / 1 )

[Buon12]3 ( 210 , 176 / 17 , 33 / 1 | 29.6 , 341 / 16 , 25 / 1 )
[Chen15]112 ( 21 , 176 / 17 , 33 / 1 | 29.6 , 341 / 16 , 25 / 1 )
[Megh15]113 ( 21 , 176 / 17 , 33 / 1 | 29.6 , 241 / 16 , 25 / 1 )
[Wang22]114 ( 21 , 176 / 17 , 33 / 1 | 29.6 , 341 / 16 , 25 / 1 )
[Yang23]115 ( - / - / - | - / - / - )

Loh et al.

[Loh08]55 ( 2.78 / 10.5 / 1.37 | 3.51 / 10.3 / 1.09 )
[Wang22a]116 ( 2.78 / 10.5 / 1 | 3.51 / 10.3 / 1 )

Sun, You, and Wong

[Sun12]34 ( 1.803 / 13.52 / 1.2 | 1.861 / 9.986 / 1.11 )
[Sun12a]117 ( 1.803 / 13.52 / 1.2 | 1.861 / 9.986 / 1.11 )

Niwa, Suda, and Kimoto

[Niwa14]51 ( 8190 / 39.4 / 1 | 4.513 / 12.82 / 1 )
[Hase17]118 ( 8190 / 39.4 / 1 | - / - / - )
[Mcph21]119 ( - / - / - | - / - / - )

Niwa, Suda, and Kimoto

[Niwa15]68 ( - , 0.143 / - , 4.93 / 2.37 | - , 3.14 / - , 11.8 / 1.02 )
[Kimo18]120 ( - , 0.143 / - , 4.93 / 2.37 | - , 3.14 / - , 11.8 / 1.02 )
[Arva19]121 ( 0.143 / 4.93 / 2.37 | 3.14 / 11.8 / 1.02 )
[Kimo19]122 ( - , 0.143 / - , 4.93 / 2.37 | - , 3.12 / - , 11.8 / 1.02 )

Thornber (λ/⟨Ei⟩/Ep/EkBT︸ ︷︷ ︸
electron

| λ/⟨Ei⟩/Ep/EkBT︸ ︷︷ ︸
hole

)

Konstantinov et al.

[Kons97]13 ( 29.9 / 10 / 120 / 0 | 32.5 / 7 / 120 / 0 )
[Huan98]123 ( 29.9 / 10 / 120 / 0 | 32.5 / 7 / 120 / 0 )
[Kons98]54 ( 29.9 / 10 / 120 / 0 | 32.5 / 7 / 120 / 0 )
[Lee02]124 ( - / - / - / - | - / - / - / - )

FIG. 5. Reference chain for impact ionization parameters. Publications with blue background are not fo-

cused on 4H-SiC, those in green are novel analyses on 4H-SiC and orange color indicates that the reference

was guessed based on the values but not explicitly stated in the publication. The values for a and b were

scaled by 1×106 for improved readability.

of research. Nevertheless, only very few values for the impact ionization perpendicular to the

c-axis is available. Since the few available data suggest a higher coefficient and thus earlier break-

down these direction, further in detail investigations are required in the future. Also very few

temperature analyses are available. Some of the temperature dependencies were later proposed

by other authors, e.g., by Cha and Sandvik 87 or by Steinmann et al. 82 , who fitted the linear and

quadratic temperature coefficients of the breakdown voltage. Nida and Grossner 46 present the

high temperature evolution of some models.
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In contrast to Silicon, 4H-SiC shows higher hole than electron current amplification, i.e.,

β > α1,125, which is attributed to discontinuities in the electron spectrum126. Consequently, the

Shockley approximation of the "lucky electron" can only be applied to holes, as the electrons en-

ergy can not continuously increase13. Kimoto et al. 120 name these "minigaps" as the reason for

the low temperature dependence of α . Nevertheless, the breakdown voltage still increases with

temperature87,127 because the impact coefficient of the holes decreases with temperature1, which

prevents thermal runaway.

Although models can be use for any arbitrary field strengths, they are most accurate within

their often very narrow characterization range. In general, the highest accuracy is required

around the critical electric field, i.e., where breakdown occurs. In the literature commonly 2–

3 MVcm−1128–136 are used, whereat some explicitly state a dependence on the doping concentra-

tion13,42,43,53,60,61,68,120,122,137–141. Be advised that these values are, most commonly, determined

for uniformly doped non-punch through diodes using power law approximations of the impact

coefficients53. Consequently such values have to be interpreted with a grain of salt and have to be

corrected according to the actual structure and doping level68,142. Over short distances a higher

field is required to achieve breakdown than for thick devices, where charges can multiply over

long distances.
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