TCAD Parameters for 4H-SiC: A Review

Jürgen Burin,¹ Philipp Gaggl,¹ Simon Waid,¹ Andreas Gsponer,¹ and Thomas Bergauer¹ Institute of High Energy Physics, Austrian Academy of Sciences, Nikolsdorfer Gasse 18, 1050 Wien

(*e-mail: juergen.burin@oeaw.ac.at)

(Dated: 21 January 2025)

In this paper we review the models and their parameters to describe the relative permittivity, bandgap, impact ionization, mobility, charge carrier recombination/effective masses and incomplete dopant ionization of 4H silicon carbide in computer simulations. We aim to lower the entrance barrier for newcomers and provide a critical evaluation of the status quo to identify shortcomings and guide future research. The review reveals a rich set of often diverging values in literature based on a variety of calculation and measurement methods. Although research for all the selected parameters is still active, we show that sometimes old values or those determined for other kinds of silicon carbide are commonly used.

Keywords: 4H-SiC, TCAD simulations, simulation parameters, silicon carbide

CONTENTS

I. Introduction	3
II. Mobility	4
A. Theory	4
1. Low-Field Mobility	5
2. High-Field Mobility	8
3. Carrier-Carrier Scattering	9
4. Hall Scattering Factor	10
B. Results & Discussion	10
1. Measurements	11
2. Low-Field Mobility	12
3. High-Field Mobility	27
4. Carrier-Carrier Scattering	29
References	35

E_{g}	band gap energy	Т	temperature
ħ	reduced Plank constant	$m_{ m d}^*$	effective density-of-state mass
ε	permittivity	е	elementary charge
m_0	electron rest mass	ϵ_0	vacuum permittivity
E_{F}	intrinsic Fermi energy	t	time
E _C	conduction band energy	$E_{ m V}$	valence band energy
ni	intrinsic carrier concentration	F	electric field
N _A	acceptor concentration	$N_{\rm D}$	donor concentration

I. INTRODUCTION

Silicon carbide (SiC) is a wide band gap semiconductor that is increasingly deployed in harsh or high voltage applications due to its favorable properties of high breakdown voltage, low leakage current or fast switching speed¹. The respective devices are designed using *technology computer aided design* (TCAD) simulations that are able to decrease the amount of required design iterations by predicting the final behavior. To achieve accurate results, a wide range of physical properties are described by more or less complex models, which all rely on a certain set of parameters. The have to be provided by the user, whereat reliable results can only be achieved if the chosen parameter set is suitable.

For 4H-SiC, the most prominent polytype of silicon carbide, the main issue with TCAD simulations is not the lack of parameters in literature but rather the overwhelming amount. Over a time span of more than a century numerous investigations proposed models and parameters for a wide range of physical parameters, resulting in two essential problems: 1) For newcomers a proper selection of parameters is challenging due to the available data. The sometimes contradicting literature also demands some time before a topic can be fully understood. 2) A lot of effort is required to trace values back to their origin. This step is, however, crucial to identify shortcomings in the status quo and trigger a critical (re-)evaluation of single properties. Overviews that compare a subset of the available models with often solely one set of parameters have been published for the topics impact ionization^{2–4}, band gap^{5,6}, charge carrier recombination⁷ and mobility⁶. All these publications lack, however, a proper discussion of the origin of the presented values, possible shortcoming and suitable avenues for future research.

In this paper we, thus, conduct a literature review on TCAD parameters for 4H-SiC focused on

the topics relative permittivity, density-of-states mass, band gap, impact ionization, charge carrier recombination, incomplete ionization and mobility. For each we describe the theoretical models and provide a simple overview of the topic to decrease the entrance barrier for newcomers. We also present the achieved parameters, analyze the agreement within the scientific community and comment on the suitability of the most commonly used parameters. We further identify possible shortcomings to guide future research. Nevertheless, we want to highlight that our results are not a one fits all solution but mainly an overview for starting parameter sets, that have to be further refined to fit the measurements of device at hand.

This paper is organized in the following fashion: In ?? we introduce the general methods utilized in the review followed by an introduction to (4H) silicon carbide in ??. We then review the models and parameters for the topics permittivity (??), density-of-states mass (??), band gap (??, impact ionization (??), charge carrier recombination (??), incomplete ionization (??) and mobility (Section II). We finally conclude our paper in ??.

II. MOBILITY

To describe the conductivity ρ of a material⁸, which is relevant for any transient process, the charge carrier mobility μ as shown in Eq. (1)^{9,10} is used. In this case, *n* denotes the amount of charge carriers and μ_n the respective mobility. Different mechanisms may influence the mobility such as the surface, the inversion channel in MOS structures and the bulk⁸, whereat we will investigate here solely the latter. We, thereby, build on the analysis of measurements by Darmody and Goldsman¹¹ and the summaries of mobility models published by Neila Inglesias¹², Stefanakis and Zekentes⁵ and Tian *et al.*⁶.

$$\rho = \frac{1}{nq\mu_{\rm n}} \tag{1}$$

Overall, our analyses reveal many investigations targeted toward the mobility.

A. Theory

Charge carriers in 4H-SiC accelerate along the electric field F until they are "scattered", i.e., they drastically change their velocity and/or direction by interacting with other particles. It is possible to distinguish (i) phonon (ii) defect and (iii) carrier-carrier scattering, which can be further divided¹³. The most prominent processes for 4H-SiC are acoustic phonon, (non-)polar optical

phonon, zero and first order optical intervalley phonon, ionized/neutral impurity and carrier-carrier scattering^{14–18}. The mobility defines the average time between two scattering event¹⁹ and thus provides a link between charge carriers and scattering processes²⁰. Detailed theoretical analyses of each single contribution is available in literature^{12,13,15,17,21–24}.

In TCAD tools, however, such detailed models are not convenient¹⁷. Instead, empirical models are used to describe the mobility in the low-field and high-field region (a detailed explanation follows in the next sections). The mobility, thereby, depends on many factors such as doping concentration²⁵, degree of compensation²⁶, spatial direction^{27–29}, temperature²⁵ and whether majority or minority charge carriers¹³ are described. For holes even the separate valence bands (heavy-hole, light-hole, split-off; see **??**)^{13,15,30} have to be considered.

In the past years hopping conduction, also denoted as nearest-neighbor-hopping (NNH)³¹ or variable-range-hopping (VRH)³¹ was described in 4H-SiC. This process describes the tunneling of charge carriers bound to a dopant from one impurity to the next, possible alternated by some conventional drifting phases in the bands. This effect was described at temperatures below 100 K³² ant at very high doping concentrations^{31,33}. Darmody and Goldsman¹¹ calculated the critical limit for the latter to $N_{crit} \approx 1 \times 10^{20}/\text{cm}^3$. Since this is a relatively new effect the available information are very limited and we will, thus, not further consider it in this review.

1. Low-Field Mobility

For low electric fields exists a direct relationship between the carrier velocity v and the electric field strength F^{34} as shown in Eq. (2). The impact of phonon and impurity scattering is thereby not independent³⁵, meaning that both have to be implemented in the same model.

$$v = \mu(N, T)F \tag{2}$$

Each dopant represents a coulomb scattering center¹⁰ that causes the charge carrier mobility to decrease. To account for this fact an empirical model shown in Eq. (3) was developed by Caughey and Thomas³⁶. μ_{min} can be interpreted as the mobility for very high doping where impurity scattering is dominant^{5,12} and μ_{max} the highest possible mobility at low doping, i.e., when lattice (phonon) scattering is dominant^{5,8,12}. N_{ref} denotes the doping concentration where the mobility is exactly in between those values^{26,34} and δ just how quickly the change from one to the other occurs. Arora, Hauser, and Roulston³⁷ later simplified the model by replacing the expression

 $\mu_{\text{max}} - \mu_{\text{min}}$ by μ_0^{38} , which will become interesting when we later investigate the temperature dependency.

$$\mu(N) = \mu_{\min} + \frac{\mu_{\max} - \mu_{\min}}{1 + (N/N_{\text{ref}})^{\delta}}$$
(3)

There is some disagreement in literature (discussed by Vasilevskiy *et al.*³⁹) whether *N* denotes all dopants^{5,16,17,38–58} or just the ionized ones^{14,54,59–64}. An argument to use all dopants was that this model is just a fitting^{5,6} or that also scattering on neutral dopants decreases the mobility. Roschke and Schwierz³⁴ stated that using something different than the absolute doping for *N* did not result in better results but led to convergence issues.

A similar dependency can be observed with changing temperatures. In hot samples more phonons are generated, which increases the probability of a charge carrier's scattering^{10,25,65}. In contrast, at low temperatures and high doping concentration (un)ionized impurity scattering is dominant⁶⁶. This is accounted for by scaling the respective parameters with temperature as shown in Eq. (4)^{49,67}. Note that $\gamma_{NNref} = -\delta \gamma_{ref}$.

$$\theta = \theta_{300} \left(\frac{T}{300}\right)^{\zeta} \tag{4}$$

$$\theta \in [\mu_{\min}, \mu_{\max}, \mu_0, N_{\text{ref}}, \delta, (N/N_{\text{ref}})^{\delta}]$$
 (5)

$$\zeta \in [\gamma_{\min}, \gamma_{\max}, \gamma_0, \gamma_{ref}, \gamma_{\delta}, \gamma_{NNref}]$$
(6)

We want to highlight that many different names for this combined model exist in literature, featuring sometimes more and sometimes less of the shown temperature scaling factors. Referenced were, among others, the publications by Mohammad *et al.*⁶⁸ and Sotoodeh, Khalid, and Rezazadeh⁶⁹. The term Masetti model^{25,61} is also used for this model, although the expression proposed by Masetti, Severi, and Solmi⁷⁰ actually contains an additional additive term that leads to a further reduction of the mobility at high doping densities (see)⁷¹. Except for Zhang and You⁷² the parameters are, however, chosen in a fashion that the description in Eq. (3) is achieved^{8,73}.

$$\mu(N) = \mu_{\min} + \frac{\mu_{\max} - \mu_{\min 2}}{1 + (N/N_{\text{ref}})^{\delta}} - \frac{\mu_1}{1 + (N_{\text{ref}2}/N)^{\kappa}}$$
(7)

In this model each parameter has a constant temperature scaling parameter. However, depending on the dominant scattering process vastly deviating temperature dependencies have been observed⁵⁵. While acoustic phonon scattering shows a decrease proportional to $T^{-1.519,40,74-76}$ the decline proportional to $T^{-2.6}$ was attributed to nonpolar optical phonon scattering^{17,76} ($T^{-2.5}$ for optical-mode phonons¹⁹). For the latter Adachi¹³ states, however, a dependency according

to $T^{-1.5}$. Ionized impurities scale with $T^{3/216,50,74,75}$ and neutral impurities with $T^{013,16,50}$ while coulomb scattering scales with T^1 and phonon scattering with T^{-177} . This makes the model presented in Eq. (3) not adequate for large temperature swings⁷⁸. A different approach was shown by Schröder³⁵, p. 668 who defined equations below/above 200K with deviating temperature scaling, but only provided parameters for Si.

To account for the changing temperature behavior Izzo *et al.*⁷⁹ used the phenomenological function shown in Eq. (8), without however specifying the values of *A* and *B*. This description features an increasing mobility due to ionized impurity scattering at low temperature $(T^{3/2})$ and a adjustable decrease for high temperatures, e.g., n = 3.06 in this case. This corresponds to the values by La Via *et al.*⁸⁰.

$$\mu(T) = \left(\frac{A}{T^{3/2}} + \frac{B}{T^{-n}}\right)^{-1}$$
(8)

Rambach *et al.*^{74,75} stated that the parameters of Eq. (3) should be dependent on the doping concentration, without, however, explicitly stating a mathematical expression for these. Rambach, Bauer, and Ryssel⁷⁵ also proposes a single temperature scaling for all parameters. Another possibility is to use only a single multiplicative factor for the temperature scaling, that is, however, structured according to the CT equation itself as shown in Eq. 9 and Eq. 10^{81,82}.

$$\mu_{\rm p}(T, N_{\rm A}) = \mu_{\rm p}(300, N_{\rm A}) \left(\frac{T}{300}\right)^{\beta_{\rm p}(N_{\rm A})}$$
(9)

$$\beta_{\rm p}(N_{\rm A}) = \beta_{\rm min} + \frac{\beta_{\rm max} - \beta_{\rm min}}{1 + (N_{\rm A}/N_{\rm p})\eta}$$
(10)

Uhnevionak⁸³ split μ_{max} into two additive parts with separate temperature scaling as shown in Eq. (11) to simulate the temperature dependent contribution of the bulk mobility on the channel mobility of a MOSFET. The author differentiates between this contribution and the mobility solely in bulk material.

$$\mu_{\max}\left(\frac{T}{300}\right)^{\gamma_{\max}} = \mu_{\max 1}\left(\frac{T}{300}\right)^{\gamma_{\max 1}} + \mu_{\max 2}\left(\frac{T}{300}\right)^{\gamma_{\max 2}}$$
(11)

Based on Eq. (3) Mnatsakanov *et al.*⁶⁶ separated the empirical description in the lattice and charge impurity scattering and scaled these independently with temperature. This leads to the expressions shown in Eq. 12 and Eq. 13 with γ_1 the temperature scaling factor of the impurity scattering contribution. For $T = T_0$ this expression collapses to Eq. (3). Mnatsakanov *et al.*⁶⁶ claims that this model describes the temperature behavior for low and high doping in an improved

fashion. In our opinion the exponents $\gamma_1 + \gamma_{max}$ and γ_1 should be exchanged such that the nominator is scaled with $(T/T_0)^{\gamma_1+\gamma_{max}}$ and the denominator with $(T/T_0)^{\gamma_1}$. Also, δ in the nominator of B(N)should be negative. We confirmed this by comparing the results to the figures by Neimontas *et al.*⁸⁴ and an analytic comparison to the equation presented by Mnatsakanov, Pomortseva, and Yurkov⁸⁵.

$$\mu(N,T) = \mu_{\max}(T_0) \frac{B(N) \left(\frac{T}{T_0}\right)^{\gamma_1}}{1 + B(N) \left(\frac{T}{T_0}\right)^{\gamma_1 + \gamma_{\max}}}$$
(12)

$$B(N) = \left[\frac{\mu_{\min} + \mu_{\max}\left(\frac{N_{ref}}{N}\right)^{\delta}}{\mu_{\max} - \mu_{\min}}\right]\Big|_{T=T_0}$$
(13)

One final model was proposed by Klaassen⁸⁶ as a unified description of majority and minority charge carriers including screening effects, also called Philips model, which was recently used in conjunction with 4H-SiC⁷⁸. Although this model is already included in state of the art simulation frameworks we did not consider it in our review as no explicit parameters for 4H-SiC were found in literature.

2. High-Field Mobility

At high electric fields the charge carrier velocity approaches a maximum value, the so-called saturation velocity. Explanations for this behavior are an increasing amount of optical phonon scattering^{25,47,87} or an increase in elastic and nonelastic scattering owing to the increase in carrier energy⁴⁹. Because the velocity is modeled according to $v = \mu F$, the mobility has to decrease. This field dependency of the mobility was, again, modeled by Caughey and Thomas³⁶ as shown in Eq. (14). Chen *et al.*⁸⁸ used the hydrodynamic version instead.

$$\mu = \frac{\mu_{\text{low}}}{\left[1 + \left(\frac{\mu_{\text{low}}F}{\nu_{\text{sat}}}\right)^{\beta}\right]^{\frac{1}{\beta}}}$$
(14)

Here μ_{low} denotes the low field mobility as described in the previous section and v_{sat} the saturation mobility (Kimoto and Cooper⁸⁹ calls the latter sound velocity). In some cases an additional additive factor α is introduced in various spots of this equation^{52,90} but is always set to 0 and, thus, irrelevant.

Because v_{sat} is temperature dependent^{10,13,91} Canali *et al.*⁹² suggested to scale the parameters β and v_{sat} with temperature, as shown for the low-field case in Eq. (4)^{19,49}. This model is thus often called Canali model^{93,94}. In some occasions⁶⁷ the temperature change of v_{sat} is modeled by the approach presented for Si shown in Eq. (15)^{95,96}. Be aware that some publication^{12,14,34} use a value of d = 0.6, while others use d = 0.8 in the denominator, referencing an early edition of Sze and Ng⁹⁷.

$$v_{\text{sat}} = \frac{v_{\text{max}}}{1 + d \exp\left(\frac{T}{600}\right)} \,. \tag{15}$$

Also for the temperature scaling of β a slightly different approach shown in Eq. (16) was proposed which is a combination of the modeling by Roschke and Schwierz³⁴ and Bertilsson, Harris, and Nilsson⁹⁸.

$$\beta = \beta_0 + a \exp\left(\frac{T - T_{\text{ref}}}{b}\right) + c T \tag{16}$$

Recent Monte-Carlo simulations^{12,14,42,98–106} revealed a velocity overshoot, i.e., negative differential mobility, at fields near $1 \times 10^6 \text{ V/cm}^{34}$. Foutz, O'Leary, and Shur¹⁰⁷ proposed a new model for wide band gap materials that better models mobility overshoot as shown in Eq. (17)¹⁴. This approach was used for GaN¹⁰⁸ and lately also for 4H-SiC¹⁴ but is not yet available in TCAD tools. A simplified version ($\alpha = -\infty$) is denoted as transferred-electron model^{23,109}.

$$v(F) = \frac{\mu_0 F + \mu_1 F(F/F_0)^{\alpha} + v_{\text{sat}}(F/F_1)^{\beta}}{1 + (F/F_0)^{\alpha} + (F/F_1)^{\beta}}$$
(17)

We want to highlight that in any of the publications that presented these decreasing velocity the term "overshoot" was stated. In addition the peak value, i.e., the maximum, was denoted as the saturation velocity, which begs the question whether the decrease in velocity is not only a simulation artifact.

Baliga¹⁰ used the presentation shown in Eq. (18) to describe the high field mobility. The parameters from Eq. (3) can be achieved by using $v_{sat} = A$ and $\mu_{low} = v_{sat}/B^{1/\beta}$.

$$\mu = \frac{A}{[B+F^{\beta}]^{1/\beta}} \tag{18}$$

3. Carrier-Carrier Scattering

This scattering process decreases the mobility at high injections levels^{6,10,110} and denotes interactions among the same type of charge carriers, e.g., electron-electron¹³, or between electrons and holes²⁶. To describe this effect the Conwell-Weisskopf equation shown in Eq. (19) is used^{44,111–113}.

$$\mu_{\rm ccs} = \frac{D\left(\frac{T}{T_0}\right)^{\frac{3}{2}}}{\sqrt{np}} \left[\ln\left(1 + F\left(\frac{T}{T_0}\right)^2 (pn)^{-\frac{1}{3}}\right) \right]^{-1}$$
(19)

4. Hall Scattering Factor

The mobility can be experimentally extracted from conductivity measurements, called in that case conductivity or drift mobility, as shown in Eq. (1)¹³. Since the amount of charge carriers is required as well often Hall measurements are used to determine the mobility. In general it is said that the Hall mobility can be easier measured, while the conductivity mobility can be easier calculated¹³. However, for Hall measurements a slightly different mobility, the Hall mobility $\mu_{\rm H}$ is determined¹¹⁴. The relation between these two is called Hall factor *r* and defined as shown in Eq. (20)^{13,16,28,40,65,115}. In Hall measurements the Hall coefficient $R_{\rm H}$ is determined, that is defined as shown in Eq.(21) with $n_{\rm H}$ the Hall charge carrier count^{17,54,116–118}. $R_{\rm H}$ is also used to connect the conductivity and the mobility as shown in Eq. (22)^{10,119,120}. For holes the calculation of $r_{\rm H}$ requires to consider both light and heavy holes^{15,121}.

$$r_{\rm H} = \frac{\mu_{\rm H}}{\mu_{\rm c}} = \frac{n}{n_{\rm H}} \tag{20}$$

$$R_{\rm H} = \frac{1}{n_{\rm H}e} = \frac{r_{\rm H}}{ne}$$
(21)

$$\mu_{\rm H} = \sigma R_{\rm H} = \frac{1}{e n_{\rm H} \rho} \tag{22}$$

(23)

For this reason a clear distinction between Hall and conductivity mobility is shown in the sequel. For further theoretical analyses and overviews on Hall mobilities and measurements the interested reader is referred to the dedicated literature^{12,22,122,123}.

B. Results & Discussion

In the following we present the gathered results. We had to exclude publications that solely focused on channel mobilities^{38,93,124–130}, that did not clearly specify the SiC polytype^{35,131–134} or that deal with mobility over irradiation defects¹³⁵. Furthermore, we did not consider Wright ¹³⁶ that got superseded by Wright *et al.*¹³⁷.

1. Measurements

Several approaches to determine the mobility have been proposed in the literature. These include simulations such as Monte Carlo^{42,100,103–106,138,139}, full band monte carlo (FBMC)¹⁴⁰, empirical pseudo potentials (EPM)^{101,102,104}, monte carlo particle (MCP)³⁰, non equilibrium statistical ensemble formalism (NESEF)¹⁴¹, linear augmented plane wave (LAPW)¹⁴², density functional theory (DFT)⁵⁴, extraction from the diffusion coefficient (DIFF)⁸⁴, conductivity tensor calculations (COTE)^{27,28,143,144}, general calculations^{15,21,22} and fitting (FIT)^{14,19,20,32,34,49,81,85,93}. Measurements include collected charge (CCh)¹⁴⁵, nanosecond pulsed conductance (NPC)^{128,146–149}, resistance measurements (RES)^{79,80}, Schottky barrier diode I-V fitting (SBD-IV)¹⁵⁰, Raman scattering (Raman)^{29,151}, low temperature photoluminescence (LTPL)⁵⁰, spectroscopic ellipsometry (SE)¹⁵², optical detection of cyclotron resonance (ODCR)^{24,153}, diode I-V (DIV)^{150,154}, bipolar transistor I-V (BIV)⁴ and Hall measurements^{16,17,39,40,57,58,60,62,65,74,76,82,114,117,120,155–174}. Regarding the type of mobility the majority of publications provided Hall mobility data^{15–17,21,22,27,39,40,57,58,60,62, and only few directly the conductivity one^{24,29,42,140,151}.}

As outlined in the previous section, the results of the latter have to be scaled by the Hall scattering factor $r_{\rm H}$ to achieve the conductivity mobility. In early investigations $r_{\rm H}$ was assumed approximately unity^{11,19,34,125,163} due to a lack of reliable data⁶⁵. Later it was shown, however, that this is actually only the case for high magnetic fields¹²². More thorough investigations revealed a dependency on the magnetic field^{118,122,175}, temperature^{15,17,28,54,115,120–122,168,169,176} and doping concentration^{54,116,176}. $r_{\rm H}$ thereby shows predominantly variations in the range of [0.5, 1.5].

Both an increase⁵⁸ and a decrease^{28,116} of $r_{\rm H}$ with increasing temperature was observed in measurements, which may even depend on the doping concentration⁵⁸. Pernot, Contreras, and Camassel¹⁵ provided a fitting of the results by Pensl *et al.*¹¹⁵ as shown in Eq. (24). Theoretical analyses predicted an increase of $r_{\rm H}^{17,28}$.

$$r_{\rm H} = 1.74823 - 6.22 \times 10^{-3}T + 1.36729 \times 10^{-5}T^2 - 1.44837 \times 10^{-8}T^3 + 5.86498 \times 10^{-12}T^4$$
(24)

Tanaka *et al.*⁵⁴ fitted both the Hall and conductivity mobility with the model shown in Eq. (3). A division of these fittings led to the expression for $r_{\rm H}$ shown in Eq. (25)

$$r_{\rm H} = 1.16 \left(\frac{T}{300 \,\rm K}\right)^{-0.9} \frac{1 + \left(\frac{T}{300 \,\rm K}\right)^{-1.5} \left(\frac{N_{\rm A}}{1 \times 10^{19} / \rm cm^3}\right)^{0.7}}{1 + \left(\frac{T}{300 \,\rm K}\right)^{-1.8} \left(\frac{N_{\rm A}}{3 \times 10^{18} / \rm cm^3}\right)^{0.6}}$$
(25)

With increasing doping concentration the Hall scattering factor drops¹¹⁶. The impact of compensation is still under investigation¹⁷ as well as the anisotropy^{118,175}.

We want to discuss the publication by Darmody and Goldsman¹¹ in greater detail here, because it initially seems to provide a simple answer to the question raised above but, in our opinion, contradicts in various occasions the remaining literature. At first the ratio μ_c/μ_H , which is actually the definition of r_H , was defined as the ratio of the free charge carriers and the doping concentration. This is based on the assumption that all dopants contribute to the conductivity mobility, i.e., are ionized, which has to be doubted in 4H-SiC (cp. ??). The Hall scattering coefficient was set to 1 in this analysis. In the sequel the authors showed two plots, one for the Hall and one for the conductivity mobility, which revealed a significant difference. In detail the latter is much lower, which resulted from the fact that the authors gathered the values from resistivity measurements, assuming that the amount of charge carriers is equal to the doping concentration. Since the presented plots lead to $r_H > 5$ according to the definitions shown in this publication the results of this paper have to be considered with care.

Since there is no simple translation between Hall and conductivity mobility we present the values as published and just denote their meaning with *H* resp. *C* in the sequel.

2. Low-Field Mobility

In literature often only single mobility value is found²⁶⁸. Although these can also be used in TCAD tools they often serve the purpose of a rough and quick comparison among different materials. Consequently often no information about doping concentration and temperature are provided. We found a wide range of values for the effective mobility, as well as in single spatial directions (see Fig. 1). The electron mobility is much higher than the hole one, whereat the direction parallel to the c-axis is slightly more beneficial. At least for electrons; for holes no clear distinction is possible. A wide range of values is used in the literature, which reflects the many dependencies of the mobility, e.g., doping concentration, temperature and field strength.

The analysis of the reference chain (see Fig. 2) shows that these values are not derived from a main source but rather smaller clusters are formed. This indicates that the authors assume this as common knowledge, without the need to provide proper references.

As shown before, the mobility shows an anisotropy. Some authors argue that due to low anisotropy (see Table I) just considering mobility in base plane is a reasonable approximation⁶⁷,

FIG. 1. Single mobility values for 4H-SiC in different spatial directions.

however, Hatakeyama *et al.*⁶⁰ showed that not even within the basal plane the mobility is constant. The anisotropy of the mobility is most probably caused by the anisotropy of the effective masses^{27,49,57} and thus depends on additional parameters such as the temperature¹⁶. Although it was pointed out that the ratio changes from below to above one depending on the doping and thus constant values are not well suited¹⁰³, almost exclusively constant factors are used in literature (see Fig. 3). Cheng and Vasileska¹⁴⁰ stated that previous publications⁴⁰ did not specify the exact perpendicular direction. Thus their values range between 1.25 and 1.75, compared to the previously achieved 1.2⁴⁰. Iwata, Itoh, and Pensl²⁷ investigated the mobility in varying inplane directions, revealing a maximum anisotropy factor for electrons of 0.7. The ratio was also investigated over temperature and doping concentration^{16,40,42,58,106,120,139,142,170,274}. It was also extracted from ratio of resistivity to cancel the Hall scattering factor^{16,57}.

FIG. 2. Reference chain for single mobility values in different spatial directions. If only a single value is shown the value denotes the effective value without direction.

For electrons all but one fundamental investigation predict a higher mobility parallel to the c-axis with $\mu_n^{\perp}/\mu_n^{\parallel} = 0.83 \pm 0.07$. Some predominantly qualitative overview papers state, however, the opposite^{241–247,250,251}. Others predict no anisotropy at all^{252,253,255,256,258}. For holes almost all references predict a ratio bigger than one with the most common values of 1.15 ± 0.04 .

TABLE I. Fundamental investigations of the ratio of electron and hole mobilities in the direction perpendicular (\perp) and parallel (||) to the c-axis.

ref.	$\mu_{ m n}^{\perp}/\mu_{ m n}^{\parallel}$	$\mu_{\rm p}^\perp/\mu_{\rm p}^\parallel$	type ^a	method
	[1]	[1]		
[Scha94] ¹⁷⁰	0.85 ± 0.05	-	Н	Hall
[Scha94] ⁴⁰	0.83	-	Н	Hall
[Hari95] ²⁹	1.2 ± 0.3	-	С	Raman
[Josh95] ¹³⁹	0.75 ± 0.04	-	С	MC
[Son95] ¹⁵³	0.7 ^b	-	С	ODCR
[Nils96] ¹⁰⁶	0.825 ± 0.025	-	С	MC
[Choy97d] ¹⁵⁷	0.86	-	Н	Hall
[Mats97] ¹⁶⁶	$(1.2)^{-1}$	-	Н	Hall
[Mick98] ⁴²	0.77 ± 0.07	-	С	MC
[Bell99] ¹⁰¹	-	1.33	С	EPM
[Iwat00] ²⁷	0.7	-	Н	COTE
[Bert01] ¹³⁸	0.85	-	С	MC
[Hata03] ⁶⁰	0.83	1.15	Н	Hall
[Bert04] ¹⁰³	0.84	-	С	MC
[Chen20] ¹⁴⁰	$(1.75)^{-1} - (1.25)^{-1}$	-	С	FBMC
[Ishi21] ¹⁶	$(1.15\pm0.03)^{-1}$	-	Н	Hall
[Ishi24] ⁵⁸	-	$(0.90\pm0.05)^{-1}$	Н	Hall

^a type of mobility: Hall (H), conductivity (C)

^b temperature range of 2–6 K

a. Doping Dependency A lot of publications investigated the impact of the doping concentration on the low-field mobility 15-17,21,22,24,28,29,39,40,50,54,55,57,58,60,62,76,114,117,122,143,151,156,159,162,166,167,169,177 which makes it impossible to show all gathered results in this paper. Instead we focus on the models that were developed based on these data.

A wide range of parameters for Eq. (3) were proposed to describe the low-field mobility. The model parameters for the electron (see Table II) have been proposed over a range of three decades. The maximum mobility varies within a range of [800, 1240] and the reference doping concentration $N_{\rm ref}$ only minor in the low 10¹⁷ range. There were several attempts to distinguish the spatial directions and to describe the temperature dependency of the single parameters. We also highlighted

1.11 1 0.89	[Chow17] ²⁴¹ [Dhan10] ²⁴² [Klei09] ²⁴³ [Cole04] ²⁴⁴ [Chow04] ²⁴⁵ [Elas02] ²⁴⁶ [Chow00a] ²⁴⁸ [Chow00] ²⁴⁹ [Chow97] ²⁵⁰ [Chow96] ²⁵¹ [Mukh23] ²⁵² [Wije11] ²⁵³ [Neud06] ²⁵⁵ [Neud01] ²⁵⁶ [Srir97] ²⁵⁸ [Zhu08] ²⁵⁴		
0.87 0.86 0.85	[Choy97d] ¹⁵⁷ [Capa22] ²⁶² [Bere21] ⁷⁷ [Kimo19] ⁵⁵ [Resc18] ²⁶³ [Kimo15] ²⁶⁴ [Kimo14a] ⁸⁹ [Bert01] ¹³⁸ [Scha94] ¹⁷⁰		
0.84	[Bert04] ¹⁰³	1.33 1.18	[Bell99] ¹⁰¹ [Kimo19] ^{5:}
0.83 0.825 0.8	[Jin24] ⁹³ [Rakh20] ⁹⁹ [Joha19] ²⁷⁵ [Arva19] ⁹⁴ [Lutz18] ²³⁰ [Naug17] ⁵³ [Chen15] ²⁷⁶ [Stef14] ⁵ [Hata13] ⁴⁹ [Lutz11] ²⁶ [Schr06] ³⁵ [Bert04a] ⁹⁸ [Line03] ⁴³ [Hata03] ⁶⁰ [Zett02] ²⁶⁰ [Lee02] ⁸⁷ [Mick98a] ²⁷⁷ [Palm97] ²⁶¹ [Mats97] ¹⁶⁶ [Bako97] ⁴¹ [Scha94] ⁴⁰ [Nils96] ¹⁰⁶ [Neil12] ¹² [Alba10] ⁶⁷ [Ayal04] ⁴⁴ [Rosc01] ³⁴ [Lade00] ¹⁹	1.15	[Joha19] ²⁷⁵ [Naug17] ⁵³ [Stef14] ⁵ [Pari13] ¹²¹ [Hata13] ⁴⁹ [Hata03] ⁶⁰
0.77 0.76 0.75 0.7	[Mick98] ⁴² [Casa96] ²³⁸ [Josh95] ¹³⁹ [Iwat00] ²⁷ [Son95] ¹⁵³	1.11	[Ishi24] ⁵⁸ [Arva19] ⁹⁴ [Ayal04] ⁴⁴ [Bako97] ⁴¹
$\mu_{ m n}^{\perp}$	$[Chen20]^{140}$ $/\mu_n^{\parallel}$	$\mu_{ m p}^{\perp}$	[Alba10] ⁶⁷ μ_p^{\parallel}

1.2 [Dena22]¹⁹⁶ [Naka97]¹⁵¹ [Hari95]²⁹

FIG. 3. Ratio of electron and hole mobilities in the direction perpendicular (\perp) and parallel (\parallel) to the c-axis used in literature.

the deviating interpretation of parameter *N* in the table, which underlines the large discrepancy in literature.

In a graphical representation (see Fig. 4) the qualitative agreement among the models becomes evident, with the exception of the model by Stefanakis and Zekentes⁵. However, in this case we suspect a typographical error for the parameter δ which should be 0.61 instead of -0.61. Indeed, we see the main difference among these models in the maximum mobility μ_{max} .

For the hole mobility less models were proposed with a larger spread in the respective parameters (see Table III). An extreme outlier is the value of μ_{max} by Bhatnagar *et al.*²⁷⁰ that supersedes all remaining values by almost 300 %. Qualitatively, the decrease of the hole mobility, compared to the electron one, starts at a higher doping density (see Fig. 5), i.e., the maximum mobility can be maintained for a longer period of time.

There are bigger uncertainties in regard to the minimum/maximum mobility. For the former Negoro *et al.*⁶² pointed out that the value $\mu_{min} = 16 \text{ cm}^2/(\text{Vs})$ proposed by Hatakeyama *et al.*⁶⁰ is too high. Similarly Stefanakis and Zekentes⁵ argues that Schaffer *et al.*⁴⁰ overestimates the

ref.	dir	$\mu_{ m min}$	$\mu_{ m max}$	μ_0	N _{ref}	δ	$\gamma_{ m min}$	$\gamma_{\rm max}$	$\gamma_{\rm ref}$	γ_{δ}	γo	ℓ∕NNref	N ^a	$\mathbf{K}^{\mathbf{b}}$	method
		$[cm^2 / (Vs)]$	$[cm^2/(Vs)]$	$[cm^2/(Vs)]$	[1/cm ³]	[1]	[1]	[1]	[1]	[1]	[1]	[1]			
[Ruff94] ²⁷⁸	-	20	-	380	4.50×10^{17}	0.45	-	-	-	-	-3	-	-	-	-
[Scha94] ⁴⁰	\perp	-	947	-	$1.94 imes 10^{17}$	0.61	-	-2.15	-	-	-	-	S	Н	Hall
[Mick98] ⁴²	-	-	1071	-	1.94×10^{17}	0.4	-	-	-	-	-	-	S	С	MC
[Rosc98] ^{279c}	-	40	800	-	4×10^{17}	0.44	-	-	-	-	-	-	D	-	FIT
[Wrig98] ¹³⁷	-	88	-	970	1.43×10^{17}	1	-0.57	-	2.55	-	-2.7	-	Ι	-	-
[Mnat01] ^{85d}	-	30	880	-	$2 imes 10^{17}$	0.67	-	-	-	-	-	-	D	-	FIT
[Mori01] ²²⁵		-	1141	-	1.94×10^{17}	0.61	-	-	-	-	-	-	S	С	DIV
[Rosc01] ^{34e}	\perp	40	950	-	2×10^{17}	0.76	-0.5	-2.4	1	-	-	-	D	-	FIT
[Hata03] ⁶⁰	-	-	954	-	1.28×10^{17}	0.61	-	-	-	-	-	-	Ι	н	Hall
[Kaga04] ⁸¹ f	-	-	977	-	1.17×10^{17}	0.49	-	-	-	-	-	-	S	-	FIT
[Adac05] ¹³	-	-	1400	-	$1 imes 10^{17}$	0.5	-	-	-	-	-	-	Ι	-	-
[Bala05] ²⁸⁰	-	40	950	-	$2 imes 10^{17}$	0.73	-	-2.4	-	-	-	-0.76	-	-	-
[Bhat05] ²⁷⁰	-	27.87	946.97	-	1.75×10^{17}	0.73	-	-2.3	-3.8	-	-	-	-	-	-
[Werb07] ¹⁵⁴	-	33	771	-	$2 imes 10^{17}$	0.76	-	-	-	-	-	-	D	С	DIV
[Cha08] ⁴⁷	-	-	950	-	1.90×10^{17}	0.6	1	-2.15	-	-	-	0.05	D	-	-
[Habi11] ¹⁷⁶ g	-	40	-	910	$2 imes 10^{17}$	0.76	-1.538	-	0.75	0.722	-2.397	-	s	-	FIT
[Hata13] ^{49h}	-	5	1010	-	1.25×10^{17}	0.65	-0.57	-2.6	2.4	-0.146	-	-	s	-	FIT
[Stef14] ⁵ⁱ	\perp	28	950	-	1.94×10^{17}	0.61 ^j	-	-2.4	-	-	-	0.73	Ι	-	FIT
[Shar15] ⁵¹		40	947	-	1.94×10^{17}	0.61	-0.5	-2.9	-	-	-	2.4	S	С	DIV
[Arva17] ⁵²	-	40	950	-	1.94×10^{17}	0.61	-1.536	-2.4	-	-	-	-	D	-	-
[Vasi17] ³⁹	-	20	950	-	$2 imes 10^{17}$	0.8	-	-	-	-	-	-	D	Н	Hall
[Loph18] ⁹⁰	\perp	40	910	-	$2 imes 10^{17}$	0.76	-1.536	-2.4	0.75	0.722	-	-	-	-	-
		40	1100	-	$2 imes 10^{17}$	0.76	-1.536	-2.4	0.75	0.722	-	-	-	-	-
[Ishi21] ¹⁶	\perp	40	1010	-	2.4×10^{17}	0.7	-	-	-	-	-2.58	-	D	н	Hall
		60	1180	-	2.3×10^{17}	0.74	-	-	-	-	-2.67	-	D	н	Hall
[Rao22] ²⁸¹	-	40	950	-	$2 imes 10^{17}$	0.76	-0.5	-2.15	-	-	-	-0.76	Ι	-	-
[Ishi23] ⁵⁷	\perp	40	-	1000	2.2×10^{17}	0.68	-0.7	-	-	-	-2.9	-2.5	D	Н	Hall
		20	-	1240	$2 imes 10^{17}$	0.64	0.3	-	-	-	-3.2	-2.7	D	Н	Hall

TABLE II. Parameters for the Caughey-Thomas model in Eq. (3) used to describe the electron mobility.

^a meaning of N: doping (D), ionized (I), sum of all dopants (S), intrinsic (N)

^b type of mobility: Hall (H), conductivity (C)

^c fitted to²⁸²

^d fitted to⁴⁰

^e fitted to^{40,42,139,144,283,284}

^f fitted to^{21,40,65,166,172,283}

^g fitted to^{40,66,283,284}

^h fitted to¹⁶⁶

ⁱ fitted to^{15,17,144,285}

^j In the paper $\delta = -0.61$ was stated. This did, however, not fit the shown plots

FIG. 4. Electron mobility approximations by the Caughey-Thomas model in Eq. (3) at T = 300 K. The models are only shown in the region used for characterization.

hole mobility at high doping values, although the latest studies again indicate a value larger than zero. Exceptional in this regard is the very large value of Wright *et al.*¹³⁷ that even exceeded some maximum mobility. μ_{max} also show variations in the range of 75–140 cm²/(V s).

Besides Eq. (3) we also found a more direct modeling of the mobility as shown in Eq. (26)^{9,10}. According to the authors these expressions are, however, based on Ruff, Mitlehner, and Helbig²⁷⁸ which only contains values on 6H-SiC.

$$\mu_{n} = \frac{4.05 \times 10^{13} + 20 N_{D}^{0.61}}{3.55 \times 10^{10} + N_{D}^{0.61}}$$

$$\mu_{p} = \frac{4.05 \times 10^{13} + 10 N_{A}^{0.65}}{3.3 \times 10^{11} + N_{A}^{0.65}}$$
(26)

A different simplified fitting was proposed Pernot *et al.*²¹ who fitted the electron Hall mobility to the free electron density n as shown in Eq. (27).

$$\mu_{\rm H} = -39\,000 + 7436\,\log(n) - 450.5\,\log^2(n) + 8.81\,\log^3(n) \tag{27}$$

Some authors also investigated the impact of compensation on the mobility. Pernot, Contreras, and Camassel¹⁵ fitted the Hall mobility using the logarithmic doping concentration for non-compensated (see Eq. (28)) and weakly-compensated (see Eq. (29)) devices. In the graphical

ref.	dir	$\mu_{ m min}$	$\mu_{ m max}$	μ_0	$N_{\rm ref}$	δ	$\gamma_{ m min}$	$\gamma_{\rm max}$	$\gamma_{ m ref}$	γ_{δ}	γ̈́o	YNNref	\mathbf{N}^{a}	K ^b	method
		$[cm^2/(Vs)]$	$[cm^2/(Vs)]$	$[cm^2/(Vs)]$	[1/cm ³]	[1]	[1]	[1]	[1]	[1]	[1]	[1]			
[Ruff94] ²⁷⁸	-	5	-	70	1×10^{19}	0.5	-	-	-	-	-3	-	-	-	-
[Scha94] ⁴⁰	⊥	15.9	124	-	1.76×10^{19}	0.34	-	-	-	-	-	-	S	Н	Hall
[Wrig98] ¹³⁷	-	74	-	43	1.43×10^{17}	1	-0.57	-	2.55	-	-2.7	-	Ι	-	-
[Mnat01] ^{85c}	-	33	117	-	1×10^{19}	0.5	-	-	-	-	-	-	D	-	FIT
[Hata03] ⁶⁰	-	15.9	120	-	1.80×10^{18}	0.65	-	-	-	-	-	-	Ι	Н	Hall
[Mats04] ⁸²	-	37.6	106	-	2.97×10^{18}	0.356	-	-	-	-	-	-	S	Н	Hall
[Bala05] ²⁸⁰	-	53.3	105.4	-	2.20×10^{18}	0.7	-	-2.1	-	-	-	-	-	-	-
[Bhat05] ²⁷⁰	-	26.1	401.87	-	1.04×10^{18}	0.7	-	-2.3	-3.8	-	-	-	-	-	-
[Werb07] ¹⁵⁴	-	10	-	81	1×10^{19}	0.5	-	-	-	-	-	-	D	С	DIV
[Cha08] ⁴⁷	-	16	140	-	1.70×10^{19}	0.34	-1.6	-2.14	-	-	-	0.17	D	-	-
[Koiz09] ^{17d}	-	-	114.1	-	5.38×10^{18}	0.66	-	-2.1	-	-0.35	-	2.44	D	Н	Hall
[Habi11] ¹⁷⁶ e	-	40	-	82	6.30×10^{18}	0.55	-1.538	-	0.75	0.722	-2.2397	-	S	-	FIT
[Hata13]49f	-	-	113.5	-	2.40×10^{18}	0.69	-0.57	-2.6	2.9	-0.2	-	-	S	-	FIT
[Stef14] ^{5g}	1	-	114	-	5.38×10^{18}	0.66	-	-2.72	-	-0.35	-	2.44	Ι	-	FIT
[Liau15] ⁵⁰	-	-	75	-	2×10^{19}	0.7	-	-	-	-	-	-	D	С	LTPL
[Shar15] ⁵¹		15.9	124	-	1.76×10^{19}	0.34	-0.5	-2.9	-	-	-	2.3	S	С	DIV
[Loph18] ⁹⁰	⊥/∥	-	114	-	2.40×10^{18}	0.69	-0.57	-2.6	2.9	-0.2	-	-	-	-	-
[Tana18] ⁵⁴	-	-	110	-	3×10^{18}	0.6	-	-3	-	-	-	-1.8	D	Н	DFT
	-	-	95	-	1×10^{19}	0.7	-	-2.1	-	-	-	-1.5	D	С	DFT
[Rao22] ²⁸¹	-	15.9	125	-	1.76×10^{19}	0.76	-0.5	-2.15	-	-	-	-0.76	Ι	-	-
[Ishi24] ⁵⁸	1	20	-	74	6.2×10^{18}	0.72	-2.2	-	-	-	-2.3	-0.9	D	Н	Hall
		20	-	63	6.4×10^{18}	0.83	-2.2	-	-	-	-2.3	-0.9	D	Н	Hall

TABLE III. Parameters for the Caughey-Thomas model in Eq. (3) used to describe the hole mobility.

^a meaning of N: doping (D), ionized (I), sum of all dopants (S), intrinsic (N)

^b type of mobility: Hall (H), conductivity (C)

^c fitted to⁴⁰

```
<sup>d</sup> fitting done by Stefanakis and Zekentes<sup>5</sup>
```

^e fitted to^{40,66,283,284}

^f fitted to¹⁶⁶

^g fitted to^{15,17,144,285}

^h In the paper $\delta = -0.61$ was stated. This did, however, not fit the shown plots

representation we only show the former case (denoted by NC), since the latter results in negative

FIG. 5. Hole mobility approximations by the Caughey-Thomas model in Eq. (3) at T = 300 K. The models are only shown in the region used for characterization.

TABLE IV. Parameters for the model in Eq. (7). ref mob. μ_{\min} $\mu_{\rm min2}$ $N_{\rm ref}$ δ μ_1 $N_{\rm ref2}$ κ $[cm^2/(Vs)]$ $[cm^2/(Vs)]$ $[1/cm^{3}]$ [1] $[cm^{2}/(Vs)]$ $[1/cm^{3}]$ [1] [Zhan18]⁷² $5 imes 10^{18}$ $3.43 imes 10^{20}$ 0 $\mu_{\rm n}$ 88 1 43.4 2 0 5×10^{19} 29 6.1×10^{20} $\mu_{\rm p}$ 44 1 2

mobility values. Note that we used n = N and $N_A = N$ for the plots.

non-compensated:
$$\sigma R_H(292 \text{ K}) = 2964.3 - 648.72 \log(N_A) + 53.393 \log^2(N_A)$$

 $-1.8717 \log^3(N_A) + 0.002296 \log^4(N_A)$ (28)
weakly-compensated: $\sigma R_H(292 \text{ K}) = 24617 - 5982 \log(N_A) + 536.12 \log^2(N_A)$
 $-21.151 \log^3(N_A) + 0.30937 \log^4(N_A)$ (29)

Zhang and You⁷² used the Masetti model introduced in Eq. (7) with the parameters shown in Table IV. The additional reduction at doping densities around $10^{20}/\text{cm}^3$ are very well visible. Since no values for μ_{max} were provided we used $950 \text{ cm}^2/(\text{V s})$ for electrons and $80 \text{ cm}^2/(\text{V s})$ for holes.

b. Temp Dependency We found various publications that provide detailed in information on the change of the Hall mobility^{15–17,21,22,27,28,40,54,57,58,65,66,74,76,78,81,82,84,114,117,120,121,143,144,158,161–169,171,172}

FIG. 6. Description of the electron mobility with varying temperature according to Eq. (3) for a doping of 1×10^{16} /cm³. The dash-dot-dotted lines are based on deviating descriptions (see text).

as well as the conductivity mobility^{24,50,79,80,139,142} with varying temperature.

For electrons the fitting parameters for Eq. (3) (see Table II) show lots of deviations. In some cases not even the sign of the parameters is the same for all models. In a graphical representation for a fixed value of $N = 1 \times 10^{16}$ /cm³ some deviations are visible (see Fig. 6). For low temperatures almost all models agree on high mobilities that further increase with decreasing temperature. This contradicts, however, the increasing impact of impurity scattering, that is only covered by the models proposed by Uhnevionak⁸³ and Neimontas *et al.*⁸⁴. Note that the latter describes the electron mobility in heavily p-doped material (so the minority mobility), which explains the lower values. An increase at low temperatures was also reported by Götz *et al.*⁶⁵ who attributed it to impurity limited mobility and the decrease due to phonon limited mobilities. This also corresponds to the majority of measurements we saw, implying once more that the temperature dependency is only valid in a very narrow range for the majority of the available models.

Others observe a dependency of $T^{-2.1}$ to $T^{-2.5}$ instead of the expected $T^{-1.576,166,167}$. The temperature dependency even shows anisotropy. Schaffer *et al.*⁴⁰ proposed a temperature scaling parallel to the c-axis of $T^{-2.4}$ and perpendicular $T^{-2.15}$ above 200 K. Below that value they get $T^{-1.2}$ (parallel) and $T^{-1.18}$ (perpendicular). Ishikawa *et al.*¹⁶ investigated the temperature dependency for three differing dopings, seeing a significant absolute decrease with increasing doping

FIG. 7. Description of the hole mobility with varying temperature according to Eq. (3) for a doping of $1 \times 10^{16} / \text{cm}^3$.

concentration and an anisotropy⁵⁸. In¹⁶ the whole mobility is scaled by $T^{-\beta}$ whereat β is doping dependent. In Fig. 6 we chose $\beta = -2.38$ perp. to the c-axis and $\beta = -2.54$ parallel to it which corresponds to measurements on a doping concentration of $N_{\rm D} = 3.6 \times 10^{16}/{\rm cm}^3$.

For holes the fitting parameters for Eq. (3) (see Table III) show the same inconsistencies as the electron data. The graphical representation reveals a much higher agreement among the single models (see Fig. 7). All models predict a continuous decrease with increasing temperature.

Buono⁴⁸ argued that the temperature dependency μ_{max} for both charge carriers with $\gamma_{max} = -2.15$ is smaller than the ideal factor of -1.5 that is expected from lattice scattering. This was believed to be due to non-polar optical-phonon scattering. Lades¹⁹ achieved $-1.8 \ge \gamma_{max} \ge -2.2$, which lies between acoustical-mode phonon (-1.5) and optical-mode phonon (-2.5) scattering. Thus they assumed the contribution of other scattering factors contribute less to limit the mobility.

For Eq. 9 and Eq. 10 the parameter values shown in Table V were proposed. Note that in this case the temperature coefficient scales with the doping concentration. Kagamihara *et al.*⁸¹ stated that according to theoretical consideration the temperature parameters are 1.5 for low temperatures and 2.6 for high ones, which is close to β_{\min} (1.54) and β_{\max} (2.62) in their fitting.

In contrast to Eq. (3) also more straightforward model for the temperature dependency of the mobility exist. Cheng, Yang, and Zheng²⁰ fitted the expression shown in Eq. (30) to the measure-

TABLE V. Parameters for the model in Eq. 9 and Eq. 10.

ref	mob.	eta_{\min}	$\beta_{\rm max}$	$N_{ m p}$	η	K	method
		[1]	[1]	$[1/cm^3]$	[1]		
[Kaga04] ⁸¹	$\mu_{ m n}$	1.54	2.62	1.14×10^{17}	1.35	-	FIT
[Mats04] ⁸²	$\mu_{ m p}$	2.51	3.04	8.64×10^{17}	0.456	Н	Hall

TABLE VI. Parameters for the model in Eq. (12) and Eq. (13).

ref	mob.	$\mu_{ m min}$	$\mu_{ m max}$	N _{ref}	δ	γ _{max}	γı
		$[cm^2/(Vs)]$	$[cm^2/(Vs)]$	[1/cm ³]	[1]	[1]	[1]
[Neim06] ⁸⁴	$\mu_{\rm n}$	100	320	2×10^{17}	-0.67 ^a	2.6	0.5

^a In the paper this value is 0.67 but we changed it to achieve the same results as shown in the paper.

ments of the electron mobility by Schaffer et al.⁴⁰.

$$\mu_{\rm n}(T) = 5422 \exp\left(-\frac{T}{128}\right) + 95 \tag{30}$$

 $In^{9,10}$ simplified equations that just use a constant mobility combined with a temperature scaling have been presented, which are based on a fitting to data from Koizumi, Suda, and Kimoto¹⁷ and a reference to¹³⁷.

$$\mu_{\rm n}(T) = 1140 \exp\left(\frac{T}{300}\right)^{-2.7}, \\ \mu_{\rm p}(T) = 120 \exp\left(\frac{T}{300}\right)^{-3.4}$$
(31)

The model proposed by Uhnevionak⁸³ shown in Eq. (11) that splits μ_{max} in two parts is also shown in the figure using the parameters $\mu_{max1} = 500$, $\gamma_{max1} = -11.6$, $\mu_{max2} = 450$, $\gamma_{max2} = -2.74$, $\gamma_{NNref} = -12.5$ and the remaining parameters according to Roschke and Schwierz³⁴.

We also plotted the model proposed in Eq. (12) and Eq. (13) with the parameters introduced by Neimontas *et al.*⁸⁴ shown in Table VI. These describe the electron mobility in heavily p-doped 4H-SiC.

c. Analysis An investigation of the consistency of 4H-SiC mobility models is challenging. In the sequel we want to highlight the most striking issues we encountered. A more complete listing of all inconsistencies is presented in **??**.

First of all, we were unable to retrace some values^{90,280,285,286} back to scientific publications. In other cases references were provided but the presented values could not be found therein^{8,90}. Some publications even present multiple models^{89,99,196} that contradict each other.

In the case of electrons sometimes different models seem to be mixed, e.g., using the mobility values from one and the temperature scaling from another. Often a combination of the models by Schaffer *et al.*⁴⁰ and Roschke and Schwierz³⁴ were encountered^{44,52,87,94,276} (see Fig. 8). These are also the most influential publications, whereat newer studies have barely been adopted in literature. On the positive side almost all references go back to one of the fundamental studies and almost exclusively 4H values are used. The only exception are the values by Ruff, Mitlehner, and Helbig²⁷⁸, which are, however, also seldomly used.

For holes (see Fig. 9) the majority of the values goes back to a single publication by Schaffer *et al.*⁴⁰, whereat, again, newer values do not spread well within the community. We are also unsure about the temperature scaling of the hole mobility in the publications citing⁴⁰, which seem to be taken directly from electrons. There are also various occacions^{63,96,276,292,293,296} where μ_{max} was interpreted as μ_0 , i.e., μ_{min} is not subtracted.

At last we want to investigate two previous reviews on mobility models in greater details, as we encountered problematic parameters that need to be discussed. We begin with the analysis by Stefanakis and Zekentes⁵ who investigated six models and fitted a seventh to measurement results for holes. The model denoted as "Reggio Calabria Uni." was cited from Pezzimenti³⁰¹ but go back to Schaffer *et al.*⁴⁰ for holes and Roschke and Schwierz³⁴ for electrons. There are also some mistakes with the parameters. δ of the electrons should be 0.76 instead of 0.34, while $\gamma_{\rm NNref}$ of the holes should be -0.34 instead of -0.76. A similar mistake happened for the values cited from Nawaz²⁸⁵, where for the electrons $\delta = 0.73$ instead of the stated 0.34 and $\gamma_{NNref} =$ -0.76 instead of 0.73 were proposed. For holes μ_{min} should be $53.3 \text{ cm}^2/(\text{Vs})$ instead of the stated $15.3 \text{ cm}^2/(\text{Vs})$. In table 3 and 4 the entries by Bakowski, Gustafsson, and Lindefelt⁴¹ and Brosselard ³⁰⁷ were switched, whereat the then appropriate values for the former are still not fully correct since the temperature scaling is regarding to μ_0 and not μ_{max} . The fitting of γ_{NNref} for the values presented by Koizumi, Suda, and Kimoto¹⁷ is also questionable as the value proposed for $N_{\rm ref}$ is shown in the measurements for 400 K instead of 300 K and for $\gamma_{\rm NNref} = 2.44$ the value of $N_{\rm ref}$ effectively decreases with rising temperature, although the measurements show the opposite. Finally, we again want to highlight that the value δ for electrons should be 0.61 instead of the proposed -0.61.

The second overview paper was published by Tian *et al.*⁶. Some mistakes happened for the values cited from Nawaz²⁸⁵, where for the electrons $\delta = 0.73$ instead of the stated 0.34 and

Electron (dir) (μ_{\min} , μ_{\max} , μ_0 , N_{ref} , δ) (γ_{\min} , γ_{max} , γ_{ref} , γ_{δ} , γ_0 , γ_{NNref}) Mnatsakanov, Pomortseva, and Yurkov $[Mnat01]^{85}(-)(30,880,-,2\times 10^{17},0.67)(-,-,-,-,-)$ - [Mnat02]⁶⁶ (-) (30, 880, -, 2 × 10¹⁷, 0.67) (-, -, -, -, -) Ruff, Mitlehner, and Helbig $[Ruff94]^{278}(-)(20, -, 380, 4.50 \times 10^{17}, 0.45)(-, -, -, -3, -)$ [Nall99]⁷³ (-) (20, -, 700, 4.50×10^{17} , 0.45) (-, -, -, -3, -) Roschke and Schv hke and Schwierz [Rosc01]³⁴ (\perp) (40 , 950 , - , 2 × 10¹⁷ , 0.76) (-0.5 , -2.4 , 1 , - , -) $[\text{Nall00}]^{287}(-)(20, -, 700, 4.50 \times 10^{17}, 0.45)(-, -, -, -3, -)$ $\label{eq:amage} \begin{tabular}{|c|c|c|c|c|c|c|} \hline \mbox{[Tama08a]}^{288} (\,-\,) (\,-\,,950\,,-\,,2\times10^{17}\,,0.76\,) (\,-\,,-2.8\,,-\,,-\,,-\,) \end{tabular}$ $[Line03]^{43}(-)(40,950,-,2\times10^{17},0.76)(-,-,-,-,-)$ - [Liu21]²⁸⁹ (-) (-, 950, -, 2 × 10¹⁷, 0.76) (-, -2.9, -, -, -) $[Bert04]^{103} (\perp) (40,950,-,2 \times 10^{17},0.76) (-,-2.4,-,-,-0.76)$ $[Bert04a]^{98} (\perp) (40,950,-,2 \times 10^{17},0.76) (-,-2.4,-,-,-0.76)$ $[Lv04]^{14} (-) (40,950,-,2 \times 10^{17},0.76) (-,-2.4,-,-,1.05)$ Schaffer et al $[\text{Scha94}]^{40}(\perp)(0,947,-,1.94\times10^{17},0.61)(-,-2.15,-,-,-)$ $[Pere06]^{46}(-)(40,950,-,2\times10^{17},0.76)(-,-2,-,-,-)$ $\label{eq:alba10} \bigsqcup [Alba10]^{67} \ (\, -\,) \ (\, 40\, ,\, 950\, ,\, -\, ,\, 2\times 10^{17}\, ,\, 0.76\,) \ (\, -0.5\, ,\, -2.4\, ,\, -\, ,\, -\, ,\, -0.76\,)$ $[Bako97]^{41}(-)(0, -, 947, 1.94 \times 10^{17}, 0.61)(-, -, -, -2.15, -)$ $- [Codr00]^{59}(-)(0, -, 947, 1.94 \times 10^{17}, 0.61)(-, -, -, -2.15, -)$ - [Mcnu04]⁴⁵ (-) (-, -, 947, 1.94 × 10¹⁷, 0.61) (-, -, -, -2.15, -) $[Mcnu13]^{290} (-) (-, -, 947, 1.94 \times 10^{17}, 0.61) (-, -, -, -2.15, -)$ $[Pezz13]^{301} (-) (40,950, -, 2 \times 10^{17}, 0.76) (-0.5, -2.4, -, -, -0.76)$ 1 - [Megh15]³⁰² (-) (40,950, -, 2×10¹⁷, 0.76) (-0.5, -2.4, -, -, -0.76) - [Dibe14]²⁷² (-) (-, -, -, -, -) (-, -, -, -2.15, -) $[Zhou 16]^{303} (-) (40,950,-,2 \times 10^{17},1) (-,-,-,-,-)$ $- [Shah98]^{291} (-) (0, 947, -, 1.94 \times 10^{17}, 0.61) (-, -, -, -, -)$ [Megh18]⁶⁴ (-) (40 , 950 , - , - , -) (- , - , - , - , -) $[Wang98]^{292}(-)(-,947,-,1.94\times10^{17},0.61)(-,-2,-,-,-)$ $\label{eq:constraint} \bigsqcup[\text{Zegh19}]^{304} \, (\, - \,) \, (\, 40 \, , \, 950 \, , \, - \, , \, 2 \, \times \, 10^{17} \, , \, 0.76 \,) \, (\, -0.5 \, , \, -2.4 \, , \, - \, , \, - \, , \, -0.76 \,)$ - [Wang99]⁹⁶ (-) (-, 947, -, 1.94 × 10¹⁷, 0.61) (-, -2, -, -, -) $[Lade00]^{19}(-)(0,947,-,1.94\times10^{17},0.61)(-,-,-,-,-)$ $--- [Chen 20]^{140} (\parallel) (0, 947, -, 1.94 \times 10^{17}, 0.61) (-, -, -, -, -)$ $[Lec02]^{87} (\| / \bot) (0, -, 1136/947, 1.94 \times 10^{17}, 0.61) (-2.4/-2.15, -2.4/-2.15, -, -, -)$ Hatakeyama *et al.* $[\text{Li03}]^{61}(-)(-,-,947,1.94\times10^{17},0.61)(-,-,-,-2,-)$ $[Hata03]^{60}(-)(0,954,-,1.28\times10^{17},0.61)(-,-,-,-,-)$ $= [Zhao03]^{293} (-) (-, -, 947, 1.94 \times 10^{17}, 0.61) (-, -, -, -2, -)$ - [Nipo16a]³⁰⁶ (-)(-,-,-,-)(-,-,-) $[Das15]^{25}(-)(0, -, 947, 1.94 \times 10^{17}, 0.61)(-, -, -, -2, -)$ $[Ayal04]^{44} (\perp) (40,950,-,1.94 \times 10^{17},0.61) (-0.5,-2.4,-,-,-)$ Balachandran, Chow, and Agarwal $---- [Lech21]⁸ (||) (15.48, -, 1415.4, 1.80 \times 10^{17}, 0.560723) (-, -, -, -2.5, -)$ $[Bala05]^{280}(-)(40,950,-,2\times10^{17},0.73)(-,-2.4,-,-,-0.76)$ $[Yang22]^{294} (-) (-, -, -, -, -) (-, -, -, -, -)$ $[\text{Nawa10}]^{285}(-)(40,950,-,2\times10^{17},0.73)(0,-2.4,-,-,-0.76)$ $[Maxi23]^{295} (-) (40,950,-,1.94 \times 10^{17},0.61) (-0.5,-2.4,-,-,-)$ $[\text{Usma14}]^{286}(-)(40,950,-,2\times10^{17},0.73)(0,-2.4,-,-,-0.76)$ $[\text{Schr06}]^{35}(-)(0,947,-,1.94\times10^{17},0.61)(-,-,-,-,-)$ $[Zhan09]^{296}(-)(-,-,947,1.94\times10^{17},0.61)(-,-,-,-2,-)$ Hatakeyama, Fukuda, and Okumura $[\text{Khal12}]^{297}(-)(-,947,-,1.94\times10^{17},0.61)(-,-2,-,-,-)$ $[Hata13]^{49}\,(\,-\,)\,(\,5\,,\,1010\,,-\,,\,1.25\,\times\,10^{17}\,,\,0.65\,)\,(\,-0.57\,,\,-2.6\,,\,2.4\,,-\,,-\,)$ $= [Zhan 10]^{63} (-) (-, -, 947, 1.94 \times 10^{17}, 0.61) (-, -, -, -2, -)$ $= [\text{Naug17}]^{53} (\perp) (5, 1010, -, 1.25 \times 10^{17}, 0.65) (-0.57, -2.6, 2.4, -, -)$ $[Lutz11]^{26} (-) (0,947, -, 1.94 \times 10^{17}, 0.61) (-, -2.15, -, -, -)$ $[Jin24]^{93} (-) (5, 1010, -, 1.25 \times 10^{17}, 0.65) (-, -, -, -, -)$ $[Buon 12]^{48} (-) (-, -, 950, 1.94 \times 10^{17}, 0.61) (-, -, -, -2.15, -)$ - [Chen15]²⁷⁶ (\parallel / \perp) (0, -, 1136/947, 1.94 × 10¹⁷, 0.61) (-2.4/-2.15, -, -, -2.4/-2.15, -) $[Joha16]^{298}(-)(0,947,-,1.94\times10^{17},0.61)(-,-2.15,-,-,-)$ Kimoto and Coope [Kimo14a]⁸⁹ (\perp) (-, 1020, -, 1.80 × 10¹⁷, 0.6) (-, -1.8–2.8, -, -, -) $[Lutz18]^{230}(-)(0,947,-,1.94\times10^{17},0.61)(-,-2.15,-,-,-)]$ $[Fuji17]^{159}(-)(-,-,-,-,-)(-,-,-,-)$ $[Arva19]^{94} (\perp) (40,950,-,1.94 \times 10^{17},0.61) (-,-,-,-,-)$ $[\text{Kimo19}]^{55}$ (\perp) (-, 1020, -, 1.80 × 10¹⁷, 0.6) (-, -1.8--2.8, -, -, -) $[Joha19]^{275}(-)(-,940,-,-,-)(-,-,-,-)$ $[\text{Yang22}]^{294}(-)(-,-,-,-,-)(-,-,-,-)$ Stefanakis and Zeken $[\text{Stef14}]^5 (\perp) (28,950, -, 1.94 \times 10^{17}, 0.61) (0, -2.4, -, -, 0.73)$ Mickevičius and Zhao $[Trip19]^{113}(-)(28,950,-,1.94\times10^{17},0.61)(0,-2.4,-,-,0.73)$ $[Mick98]^{42}(-)(-,1071,-,1.94\times10^{17},0.4)(-,-,-,-,-)$ $[\text{Tila07}]^{299}(-)(-,1071,-,1.94\times10^{17},0.4)(-,2.4,-,-,-)$ Lophitis et $[Loph18]^{90}$ (\perp / \parallel) (40 , 910/1100 , - , 2 × 10¹⁷ , 0.76) (-1.536 , -2.4 , 0.75 , - , -) Wright et al $--- [Rakh20]^{99}(-)(-, 699.4, -, -, -)(-, -, -, -, -)$ $[Wrig98]^{137} (-) (\,88\,,-\,,970\,,\,1.43 \times 10^{17}\,,\,1\,) (\,-0.57\,,-\,,2.55\,,\,-2.7\,,-\,)$ $---- [Bali06]^{9}(-)(-, 1140, -, -, -)(-, -2.7, -, -, -)$ - [Bali19]¹⁰ (-) (-, 1140, -, -, -) (-, -2.7, -, -, -)

FIG. 8. Reference chain for low field electron mobility models. are fundamental investigations, research not focused on 4H and connections predicted from the used values.

 $\gamma_{\rm NNref} = -0.76$ instead of 0.73 were proposed earlier. For holes $\mu_{\rm min}$ should be 53.3 cm²/(Vs) instead of the stated 15.3 cm²/(Vs). Note that these are the same flaws as discovered in⁵. Despite these variations, this model delivered the best results and was chosen for the simulations. In addition, the maximum mobility for electrons from⁴⁸ was changed from 950 cm²/(Vs) to 947 cm²/(Vs). The model proposed by Megherbi *et al.*⁶⁴ was extended by a temperature scal-

FIG. 9. Reference chain for low field hole mobility models. are fundamental investigations, research not focused on 4H and connections predicted from the used values.

ing, which matches an earlier publication by the same authors³⁰² without, however, the correct value for γ_{NNref} .

Interesting is also that the origin of the model proposed by Wright¹³⁶, which is denoted as "Brosselard" in⁵ and "Gustaffson" in⁶ could not yet be fully identified.

3. High-Field Mobility

While early publications on SiC had to rely on Silicon parameters²⁷⁸ later many studies about the dependency of the electron resp. hole velocity on varying electric field were published^{30,42,55,98,100–102,104,105,128,140,145–149}. These led to various parameters to describe the highfield electron mobility with the model introduced in Eq. (14) (see Table VII). The saturation velocity parallel to the c-axis is lower compared to the perpendicular direction. Hatakeyama *et al.*³⁰⁸ estimated the ratio based on impact ionization coefficients (see ??), whereat Hatakeyama, Fukuda, and Okumura⁴⁹ achieved that the electron velocity parallel to the c-axis is 60 % of the perpendicular one and 80 % for holes. In the table we also added measurements and simulations that only delivered the saturation velocity without any fitting. Overall the values range from a few 10^6 V/cm to a few 10^7 V/cm .

The hole saturation velocity is marginally lower than the electron one (see Table VIII). The key difference, clearly, is the amount of conducted investigations. Often the value of the hole saturation velocity is just assumed^{52,89} or set equal to the electron one^{52,96,99,278,279,301}.

As already indicated earlier Monte-Carlo simulations reveal a maximum in the charge carrier velocity, followed by a decrease with increasing field strengths^{12,14,42,98,100–106}. While some then achieve a constant value, others report a steadily decreasing velocity. In all these simulation reports, the peak velocity is highlighted, and even denoted as saturation velocity. Nevertheless, other sources see this as a velocity overshoot^{12,14,99}, but also denote that this effect has yet only be seen in simulations and not in experiments⁹⁹.

A graphical representation of the single models for the electron velocity show quite good agreement (see Fig. 10). It can be seen that the first deviations among the model are visible already at a few kV/cm. The mobility starts to change at around 10 kV/cm^{10} , which is significantly smaller than the 200 kV/cm proposed by Lophitis *et al.* ⁹⁰. We do not explicitly show the results for holes as only a single model could be found.

The description by Lv *et al.*¹⁴ used the model introduced in Eq. (17) with the parameter shown in Eq. (32). Note that we were unable to recreate the plots shown in the paper, which are, considering the provided parameters, not retraceable for us.

$$\mu_0 = 0.17\mu_1, \ \alpha = -1.95, \ \beta = 3$$

$$F_0 = 3.05 \times 10^4 \,\text{V/cm}, \ F_1 = 2.8 \times 10^5 \,\text{V/cm}, \ v_{\text{max}} = 4.8 \times 10^7 \,\text{cm/s}$$
(32)

FIG. 10. Electron carrier velocity with varying field for $\mu_{low} = 400 \text{ cm}^2/(\text{V s})$. Long dashed models describe velocity according to Eq. (17).

In overview listings the electron saturation velocity is dominantly denoted by 2×10^7 cm/s (see Fig. 11). This popular value was already reported by V. Muench and Pettenpaul³¹¹ for 6H, as pointed out by¹⁴⁷, and then reused for 4H. Nevertheless, later investigations confirmed the validity also for 4H. Slightly lower/higher values are also available but not nearly as prominent. For holes very similar values were proposed (see Fig. 12) but, again, in much less amount.

The temperature dependency of the high-field velocity was measured by Khan and Cooper^{147,149} or investigated by simulations^{98,103}. Later these results were numerically fitted^{19,49}. Note that Lades¹⁹ used a linear fit for the exponent β such that the value published by Khan and Cooper¹⁴⁹ for 620 K could not be perfectly matched (2.2 vs. 2.4).

The results predict a decrease of the saturation velocity with increasing temperature (see Table VII and Table VIII). The values published by Das and Duttagupta²⁵, however, predict the exact opposite. This is also visible in a graphical representation (see Fig. 13). The values by Roschke and Schwierz³⁴ and Bertilsson, Harris, and Nilsson⁹⁸ were described by the model introduced in Eq. (15) and Eq. (16) with the parameters shown in Table IX, which were referenced by^{12,67,96,271}.

Finally the reference chain (see Fig. 14 for electrons and Fig. 15 for holes) clearly shows that many different publications are referenced in literature.

2.70×10^7 2.20×10^7	[Wang99] ⁶⁶ [Itob96] ¹⁰² [Lech21] ⁸ [Chou21] ²¹³ [Berc21] ⁷⁷ [Raht20] ⁹⁰ [Jiya20] ¹ [Trip19] ¹¹³ [Joha19] ²⁷⁵ [Bali19] ¹⁰⁰ [Resc18] ²⁶³ [Arva17] ⁵² [Kimo15] ²⁶⁴ [Kimo15] ²⁶⁴ [Kimo14a] ⁸⁹ [Schr06] ³⁵				
$2.12 imes 10^7$	[Bane21] ⁹¹				
2×10^7	[Jais24]* [Pais22]** [Paik22]** [Jais24]** [Paik23]*** [Paik23]*** [Mat20]*** [Sole19]*** [Gab09]*** [Mat20]*** [Sole19]*** [Gab09]*** [Paik3****] [Imas18]**** [Pais18]*** [Paik3************************************	2.26×10^{7}	[Nils00] ¹⁰⁵ [Jin24] ³³ [Chen20] ¹⁴⁰ [Kim019] ⁵⁵ [Arva19] ⁹⁴	$\begin{array}{c} 2.70 \times 10^7 \\ 2.50 \times 10^7 \end{array}$	[Josh95] ¹³⁹ [Mick98] ¹²
	[Lebe99] ²⁰⁰ [Burk99] ²⁰⁷ [Bell99] ¹⁰¹ [Agar99] ²⁰⁸ [Wrig98] ¹³⁷ [Weit98] ²⁵⁷	2.20×10^{7}	[Loph18] ⁵⁰ [Naug17] ⁵³	2×10^7	[Pers05] ¹³²
	[Shah98] ²⁹¹ [Rosc98] ²⁷⁹ [Trew97] ¹⁸¹		[Hata13]49		[Casa96] ²³⁸
	[Srir97] ²⁵⁸ [Chow97] ²⁵⁰ [Chel97] ²⁰⁹ [Yode96] ²³⁹ [Wrig96] ¹³⁶ [Weir96] ²⁵⁹		[Ayal04] ⁴⁴ [Lade00] ¹⁹	1.90×10^7	[Loph18]90
	[Chow96] ²⁵¹ [Agar96] ²¹⁰ [Neud95] ²¹¹	7	[Khan00b] ¹⁴⁸	1.83×10^{7}	[Zhao00] ³⁰
	[Weit94] ¹²⁷ [Ruff94] ²⁷⁸ [Gotz93] ⁶⁵ [Bhat93] ³¹⁶ [Powe89] ³¹⁷ [V mu77a] ³¹¹	2.2×10^{7}	[Khan00] ¹⁴⁹	1.80×10^{7}	[Nils96] ¹⁰⁶
$1.80 imes 10^7$	[Liu21] ²⁸⁹	2.12×10^7	[Hjel03] ¹⁰⁴	1.70×10^{7}	[Bert04] ¹⁰³ [Bert01] ¹³⁸
$1.60 imes 10^7$	[Aktu09] ¹⁰⁰	$2.10 imes 10^7$	[Bert01] ¹³⁸ [Nils96] ¹⁰⁶	1.64×10^7	[Nils00] ¹⁰⁵
$1.50 imes 10^7$	[Nawa10] ²⁸⁵	2.08×10^{7}	[Khan98] ¹⁴⁷	1.58×10^7	[Hjel03] ¹⁰⁴
$8.70 imes10^6$	[Bela22] ¹⁴⁵	2 107	[Bert04]103	1.32×10^7	[Jin24]93
$8 imes 10^6$	[Zhan08] ¹³⁰	2×10^7	[Mick98] ⁴²	1.20×10^7	[Naug17]53
$3.30 imes10^6$	[Sank00] ³⁰⁹	$1.40 imes 10^7$	[Arda05]146	$8 imes 10^6$	[Vass00]310
v_{s}	at	v_{s}^{-}	L at	$v_{ m s}^{\parallel}$	at

FIG. 11. Electron saturation velocity values used in literature.

4. Carrier-Carrier Scattering

The only investigation of carrier-carrier scattering in 4H-SiC we found was conducted by Lades¹⁹, who started from the parameters of Eq. (19) for Silicon and scaled them until the results fit to 4H-SiC measurements. In this fashion the values shown in Eq. (33) were achieved, which are already reused at various occasions^{35,44,113}

$$D = 6.9 \times 10^{20} / (\text{cmV s}), F = 7.452 \times 10^{13} / \text{cm}^2$$
 (33)

In addition Onoda *et al.*¹¹² proposed values for 6H. Bhatnagar *et al.*²⁷⁰ proposed separate values for electrons and holes but used an equation that was developed by Dorkel and Leturcq¹¹⁰

$2.70 imes 10^7$	[Wang99] ⁹⁶		
$2.20 imes 10^7$	[Lech21] ⁸ [Chou21] ²¹³ [Rakh20] ⁹⁹ [Loph18] ⁹⁰ [Arva17] ⁵²		
2×10^{7}	[Zegh20] ³⁰⁵ [Das15] ²⁵ [Chen15] ²⁷⁶ [Usma14] ²⁸⁶ [Pezz13] ³⁰¹ [Khal12] ²⁹⁷ [Beye11] ²⁶⁸ [Zhan10] ⁶³ [Zhan09] ²⁹⁶ [Cha08] ⁴⁷ [Bhat05] ²⁷⁰ [Kemc02] ¹⁸⁶ [Wrig98] ¹³⁷ [Wrig96] ¹³⁶ [Ruff94] ²⁷⁸		
$1.30 imes 10^7$	[Kimo19] ⁵⁵ [Bali19] ¹⁰ [Kimo15] ²⁶⁴ [Kimo14a] ⁸⁹	2.20×10^7 [Arva19] ⁹⁴	
$1.08 imes 10^7$	[Bane21] ⁹¹	1.10×10^7 [Nils00] ¹⁰⁵	8.60×10^6 [Zhao00] ³⁰
1×10^7	[Nawa10] ²⁸⁵ [Aktu09] ¹⁰⁰	1.08×10^7 [Hjel03] ¹⁰⁴	8×10^6 [Naug17] ⁵³
$8 imes 10^6$	[Liu21] ²⁸⁹	1 107 [Naug17] ⁵³	$7.30 imes 10^6$ [Hjel03] ¹⁰⁴
1×10^{6}	[Shah98] ²⁹¹	$1 \times 10^{\prime}$ [Hata13] ⁴⁹	$6.50 \times 10^6 \text{[Nils00]}^{105}$
$v_{ m s}$	at	$v_{ m sat}^{\perp}$	$v_{ m sat}^{\parallel}$

FIG. 12. Hole saturation velocity values used in literature.

FIG. 13. Temperature dependency of electron velocity for $F = 10^6 \text{ V/cm}$ and $\mu_{\text{low}} = 450 \text{ cm}^2/(\text{V s})$.

for impurity scattering. Lechner⁸ referenced the values by Fletcher³¹⁸, which are, however, for Silicon.

Harris and Inspec [Harr95]⁵⁸² (-,-,-) (-,-,-,-) [Bell99]¹⁰¹ (2 × 10⁷,-,-) (-,-,-,-)

Yoder [Yode96]²³⁹ $(2 \times 10^7, -, -) (-, -, -, -)$ [Neil12]¹² $(2 \times 10^7, -, -) (-, -, -, -)$

 $[Trew97]^{181} (2 \times 10^7, -, -) (-, -, -, -)$ $[Codr00]^{59} (2 \times 10^7, -, -) (-, 1, -, -)$

 $\begin{array}{c} \begin{array}{c} \text{ght et al.} \\ [\text{Wrig98}]^{137} (2 \times 10^7, -, -) (-, 2, -, -) \\ \\ \hline \\ [\text{Bali19}]^{10} (2.20 \times 10^7, -, -) (-, 1.25, -, -) \end{array}$

tan and Nawaz $[Usma14]^{286} (2 \times 10^7, -, -) (-, 2, -, -)$ $[Liu21]^{289} (1.80 \times 10^7, -, -) (-, 2, -, -)$

Usman

$$\begin{split} & \frac{d \log 8k \ \ or \ d}{2} & \frac{d \log 8k \ \ or \ d}{2} \\ & \left[A d a c \delta 5 \right]^{13} \left(-, 8 \times 10^6 , -, 5 \times 10^6 , -, 2 a 0 \times 10^5 \right) \left(-, -, -, 300460 \right) \right. \\ & \left[A d a c \delta 5 \right]^{13} \left(-, 8 \times 10^6 , -, - 1 \left(-, -, -, - \right) \right. \\ & \left. - \left[B a a c 2 \right]^{10} \left(8 \times 10^6 , -, - 1 \left(-, -, -, - \right) \right) \right. \\ & \left. - \left[B a a c 2 \right]^{10} \left(2 12 \times 10^6 , -, - 1 \left(-, -, - \right) \right) \right. \\ & \left. - \left[b (d 2 3 \right]^{27} \left(-, 3.3 \times 10^6 , 7.5 \times 10^6 , - 1 \left(-, -, - \right) \right. \right] \end{split}$$

 $\begin{array}{c} \text{erling} \\ [2et02]^{500} (2 \times 10^7, -, -)(-, -, -, -) \\ & & \\ &$

Li et al. [Lio3]⁶¹ (-,-,-) (-,-,-,-) L [Zegh20]³⁰⁵ (2 × 10⁷,-,-) (-,2,-,-)

Ozpineci [Ozpi04]²³⁴ (2×10^7 , -, -) (-, -, -, -) [Uhne15]⁸³ (2×10^7 , -, -) (-, -, -, -)

Sze and N

zhang *et al.* [Zhan09]²⁹⁶ (2 × 10⁷, -, -) (-, 2, -, -) L [Khal12]²⁹⁷ (2 × 10⁷, -, -) (-, 2, -, -)

Buttay *et al.* [Butt11]²²² (2 × 10⁷, -, -) (-, -, -, -) [Fuji15]²¹⁶ (2 × 10⁷, -, -) (-, -, -, -)

 $\label{eq:analysis} \begin{array}{l} \mbox{tabeyama, Fokuda, and Okumura} \\ \mbox{[Hata13]}^{00}(-,-,220\times 10^{7}) (0.46, 1.20, 0.88, -) \\ \mbox{\downarrow} \mbox{\downarrow} \mbox{$[Mat]10]}^{01}(-,120\times 10^{7}, 2.20\times 10^{7}) (-,-,-,-) \\ \mbox{\downarrow} \mbox{$[Inba1]^{01}}(2,20\times 10^{7},-,-)(-,1.2,-,-) \\ \mbox{$[Inba1]^{01}}(-,1.32\times 10^{7},2.20\times 10^{7})(-,1,2,-,-) \\ \end{array}$

FIG. 14. High-field mobility reference chain for electrons.

31

ref.	v _{sat}	v_{sat}^{\perp}	$v_{ m sat}^{\parallel}$	$\gamma_{\rm sat}$	β	γ_{eta}	T _{sat}	Ka	method
	[cm/s]	[cm/s]	[cm/s]	[1]	[1]	[1]	[K]		
[Ruff94] ^{278b}	2×10^7	-	-	-	2	-	-	-	-
[Josh95] ¹³⁹	-	-	$2.70 imes 10^7$	-	-	-	-	С	MC
[Nils96] ¹⁰⁶	-	$2.10 imes 10^7$	$1.80 imes 10^7$	-	-	-	-	С	MC
[Khan98] ¹⁴⁷	-	$2.08 imes 10^7$	-	-	0.825	-	-	С	NPC
[Mick98] ⁴²	-	2×10^7	2.50×10^7	-	1	-	-	С	MC
[Khan00] ¹⁴⁹	-	2.2×10^7	-	-	1.2	-	296	С	NPC
	-	$1.6 imes 10^7$	-	-	2.2	-	593	С	NPC
[Lade00] ^{19c}	-	2.20×10^7	-	-0.44	1.2	1	-	-	FIT
[Nils00] ¹⁰⁵	-	$2.26 imes 10^7$	$1.64 imes 10^7$	-	-	-	-	С	MC
[Sank00] ³⁰⁹	3.30×10^{6}	-	-	-	-	-	-	С	BIV
[Vass00] ³¹⁰	-	-	$8 imes 10^6$	-	-	-	300	С	DIV
	-	-	$7.5 imes 10^6$	-	-	-	460	С	DIV
[Zhao00] ³⁰	-	-	$1.83 imes 10^7$	-	-	-	-	С	МСР
[Bert01] ¹³⁸	-	$2.10 imes 10^7$	$1.70 imes 10^7$	-	0.84/1.1 ^d	-	-	С	MC
[Hjel03] ¹⁰⁴	-	$2.12 imes 10^7$	$1.58 imes 10^7$	-	-	-	-	С	EPM
[Bert04] ¹⁰³	-	2×10^7	$1.70 imes 10^7$	-	-	-	-	С	MC
[Arda05] ¹⁴⁶	-	$1.40 imes 10^7$	-	-	-	-	-	С	NPC
[Aktu09] ¹⁰⁰	1.60×10^{7}	-	-	-	-	-	-	С	MC DFT-DOS
[Hata13] ^{49e}	-	2.20×10^7	-	-0.46	1.20	0.88	-	-	FIT
[Das15] ²⁵	2×10^7	-	-	0.87	1	0.66	-	-	-
[Bela22] ¹⁴⁵	8.70×10^{6}	-	-	-	2	-	-	С	CCh
[Jais24] ¹⁵⁰	2×10^{7}	-	-	-	-	-	-	C	DIV

TABLE VII. High field mobility parameters in Eq. (14) for electrons.

^a type of mobility: Hall (H), conductivity (C) ^b β taken from Silicon

^c fitted to¹⁴⁹

^d values of $\beta \perp / \parallel$ to c-axis ^e fitted to^{19,149}

ref.	v _{sat}	$v_{ m sat}^{\perp}$	$v_{ m sat}^{\parallel}$	$\gamma_{ m sat}$	β	γ_{eta}	T _{sat}	Ka	method
	[cm/s]	[cm/s]	[cm/s]	[1]	[1]	[1]	[K]		
[Ruff94] ^{278b}	2×10^7	-	-	-	-	-	-	-	-
[Nils00] ¹⁰⁵	-	$1.10 imes 10^7$	6.50×10^6	-	-	-	-	С	MC
[Zhao00] ³⁰	-	-	$8.60 imes 10^6$	-	-	-	-	С	MCP
[Hje103] ¹⁰⁴	-	$1.08 imes 10^7$	$7.30 imes 10^6$	-	-	-	-	С	EPM
[Aktu09] ¹⁰⁰	1×10^7	-	-	-	-	-	-	С	MC DFT-DOS
[Kimo14a] ⁸⁹	$1.30 imes 10^7$	-	-	-	-	-	-	-	-
[Das15] ²⁵	2×10^7	-	-	0.52	1.213	0.17	-	-	-

TABLE VIII. High field mobility parameters in Eq. (14) for holes.

^a type of mobility: Hall (H), conductivity (C)

^b v_{sat} set equal to electron saturation velocity

TABLE IX. Model parameters for temperature dependent carrier velocity in Eq. (15) and Eq. (16).

ref.	dir	$v_{\rm max}$	d	eta_0	T _{ref}	а	b	С
		[cm/s]	[1]	[1]	[K]	[1]	[K]	[1/K]
[Rosc01] ^{34a}	-	$4.77 imes 10^7$	0.6	0.816	327	4.27×10^{-2}	98.4	0
[Bert04a] ^{98b}	\perp	$2.77 imes 10^7$	0.23	0.6	0	0	∞	10^{-3}
		2.55×10^7	0.3	1.01	0	0	∞	3×10^{-4}

^a fitted to 106,149

^b fitted to simulations by Nilsson, Sannemo, and Petersson ¹⁰⁶

Hole Saturation Velocity $(v_{sat}, v_{sat}^{\perp}, v_{sat}^{\parallel})$ $(\gamma_{sat}, \beta, \gamma_{\beta}, T_{sat})$	Li et al. $[Li03]^{61}(-,-,-)(-,-,-,-)$ $[1,103]^{61}(-,-,-)(-,-,-,-)$
Joshi	$\sum [Zegn20]^{2n} (2 \times 10^{-}, -, -)(-, 1, -, -)$
$[Josh95]^{139}(-,-,-)(-,-,-)$	
[Wang99] ⁹⁶ $(2.70 \times 10^7, -, -)(-, 1, -, -)$	Avelaw
	$[\Delta v_2]04]^{44}()()$
Wright et al.	$\sqsubseteq [Lech21]^{\circ} (2.20 \times 10^{7}, -, -) (0.44, 1.2, 1, -)$
$[Wrig98]^{137}$ (2×10 ⁷ , -, -) (-, 1, -, -)	
$[Bali19]^{10} (1.30 \times 10^7, -, -) (-, 1.2, -, -)$	
	$\sum_{n=1}^{\infty} \log 1^{130} \left(\sum_{n=1}^{\infty} \log 1^{130} \right)$
	[2nanos] (-, -, -, -) (-, -, -, -)
Nallet et al.	$ [Liu21]^{289} (8 \times 10^{6}, -, -) (-, 1.2, -, -) $
$[Nall99]^{73}(-,-,-)(-,-,-)$	
[Cha08] ⁴⁷ $(2 \times 10^7, -, -)(-, 2, -0.5, -)$	
	zhang et al. $(2 + 10^7)$
	$[\text{Zhan09}]^{250}(2 \times 10^7, -, -)(-, 1, -, -)$
Lades	[Khal12] ²⁹⁷ $(2 \times 10^7, -, -)(-, 1, -, -)$
$[Lade00]^{19}(-,-,-)(-,-,-,-)$	
[Rakh20] ⁹⁹ $(2.20 \times 10^7, -, -) (-, 1.2-2, -, -)$	
	Kimoto and Cooper
	$[\text{Kimo14a}]^{89} (1.30 \times 10^{7}, -, -) (-, -, -, -)$
Vassilevski et al.	[Kimo15] ²⁶⁴ (1.30×10^7 , -, -) (-, -, -, -)
$[Vass00]^{310}(-,-,-)(-,-,-)$	[Kimo19] ⁵⁵ (1.30×10^7 , -, -) (-, -, -, -)
[Bane21] ⁹¹ (1.08×10^7 , -, -) (-, 1.08, -, -)	
	Arvanitopoulos et al.
Hjelm et al.	$[\text{Arva17}]^{52}$ (2.20×10^7 , - , -) (4.40×10^{-1} , 1.20 , 1 , -)
$[\text{Hjel03}]^{104}$ (-, 7.30 × 10 ⁶ , 1.08 × 10 ⁷) (-, -, -, -)	$ [Loph18]^{90} (2.20 \times 10^7, -, -) (-0.44, 1.2, 1, -) $
[Hata13] ⁴⁹ $(-, -, 1 \times 10^7) (-, -, -, -)$	[Arva19] ⁹⁴ (-, -, 2.20×10^7) (-, 1.20 , -, -)
[Naug17] ⁵³ $(-, 8 \times 10^{6}, 1 \times 10^{7}) (-, -, -, -)$	[Chou21] ²¹³ (2.20×10^7 , - , -) (- , - , - , -)

FIG. 15. High-field mobility reference chain for holes.

REFERENCES

- ¹I. N. Jiya and R. Gouws, Micromachines **11**, 1116 (2020).
- ²C. Raynaud, D.-M. Nguyen, N. Dheilly, D. Tournier, P. Brosselard, M. Lazar, and D. Planson, physica status solidi (a) **206**, 2273 (2009).
- ³D. Stefanakis, N. Makris, K. Zekentes, and D. Tassis, IEEE Transactions on Electron Devices **68**, 2582 (2021).
- ⁴V. I. Sankin, Semiconductors **36**, 717 (2002).
- ⁵D. Stefanakis and K. Zekentes, Microelectronic Engineering **116**, 65 (2014).
- ⁶K. Tian, J. Xia, K. Elgammal, A. Schöner, W. Kaplan, R. Karhu, J. Ul-Hassan, and A. Hallén, Materials Science in Semiconductor Processing **115**, 105097 (2020).
- ⁷M. J. Marinella, D. K. Schroder, G. Chung, M. J. Loboda, T. Isaacs-Smith, and J. R. Williams, IEEE Transactions on Electron Devices **57**, 1910 (2010).
- ⁸B. Lechner, *Behaviour of 4H-SiC Power Semiconductor Devices under Extreme Operating Conditions*, Ph.D. thesis, Technische Universität München (2021).
- ⁹B. J. Baliga, *Silicon Carbide Power Devices* (WORLD SCIENTIFIC, 2006).
- ¹⁰B. J. Baliga, *Fundamentals of Power Semiconductor Devices* (Springer International Publishing, Cham, 2019).
- ¹¹C. Darmody and N. Goldsman, Journal of Applied Physics **126**, 145701 (2019).
- ¹²I. Neila Inglesias, "APPLYING NUMERICAL SIMULATION TO MODELS SiC SEMICON-DUCTOR DEVICES," (2012).
- ¹³S. Adachi, *Properties of Group-IV, III-V and II-VI Semiconductors* (John Wiley, Chichester, England, 2005).
- ¹⁴H. Lv, Y. Zhang, Y. Zhang, and L.-A. Yang, IEEE Transactions on Electron Devices **51**, 1065 (2004).
- ¹⁵J. Pernot, S. Contreras, and J. Camassel, Journal of Applied Physics **98**, 023706 (2005).
- ¹⁶R. Ishikawa, M. Hara, H. Tanaka, M. Kaneko, and T. Kimoto, Applied Physics Express 14, 061005 (2021).
- ¹⁷A. Koizumi, J. Suda, and T. Kimoto, Journal of Applied Physics **106**, 013716 (2009).
- ¹⁸N. Kaji, H. Niwa, J. Suda, and T. Kimoto, IEEE Transactions on Electron Devices **62**, 374 (2015).
- ¹⁹M. Lades, Modeling and Simulation of Wide Bandgap Semiconductor Devices: 4H/6H-SiC,

Ph.D. thesis, Technische Universität München (2000).

- ²⁰L. Cheng, J.-Y. Yang, and W. Zheng, ACS Applied Electronic Materials 4, 4140 (2022).
- ²¹J. Pernot, S. Contreras, J. Camassel, J. L. Robert, W. Zawadzki, E. Neyret, and L. Di Cioccio, Applied Physics Letters **77**, 4359 (2000).
- ²²J. Pernot, W. Zawadzki, S. Contreras, J. L. Robert, E. Neyret, and L. Di Cioccio, Journal of Applied Physics **90**, 1869 (2001).
- ²³S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer Vienna, Vienna, 1984).
- ²⁴B. K. Meyer, D. M. Hofmann, D. Volm, W. M. Chen, N. T. Son, and E. Janzén, Physical Review B 61, 4844 (2000).
- ²⁵A. Das and S. P. Duttagupta, Radiation Protection Dosimetry **167**, 443 (2015).
- ²⁶J. Lutz, H. Schlangenotto, U. Scheuermann, and R. De Doncker, *Semiconductor Power Devices: Physics, Characteristics, Reliability* (Springer Berlin Heidelberg, Berlin, Heidelberg, 2011).
- ²⁷H. Iwata, K. M. Itoh, and G. Pensl, Journal of Applied Physics 88, 1956 (2000).
- ²⁸H. Iwata and K. M. Itoh, Journal of Applied Physics **89**, 6228 (2001).
- ²⁹H. Harima, S.-i. Nakashima, and T. Uemura, Journal of Applied Physics 78, 1996 (1995).
- ³⁰J. H. Zhao, V. Gruzinskis, Y. Luo, M. Weiner, M. Pan, P. Shiktorov, and E. Starikov, Semiconductor Science and Technology 15, 1093 (2000).
- ³¹H. Matsuura, A. Takeshita, T. Imamura, K. Takano, K. Okuda, A. Hidaka, S. Ji, K. Eto, K. Kojima, T. Kato, S. Yoshida, and H. Okumura, Applied Physics Express **11**, 101302 (2018).
- ³²Y. Kajikawa, Journal of Electronic Materials **50**, 1247 (2021).
- ³³H. Kim, Transactions on Electrical and Electronic Materials **25**, 141 (2024).
- ³⁴M. Roschke and F. Schwierz, IEEE Transactions on Electron Devices **48**, 1442 (2001).
- ³⁵D. Schröder, *Leistungselektronische Bauelemente* (Springer Berlin Heidelberg, Berlin, Heidelberg, 2006).
- ³⁶D. Caughey and R. Thomas, Proceedings of the IEEE 55, 2192 (1967).
- ³⁷N. Arora, J. Hauser, and D. Roulston, IEEE Transactions on Electron Devices **29**, 292 (1982).
- ³⁸M. Huang, N. Goldsman, C.-H. Chang, I. Mayergoyz, J. M. McGarrity, and D. Woolard, Journal of Applied Physics 84, 2065 (1998).
- ³⁹K. Vasilevskiy, S. K. Roy, N. Wood, A. B. Horsfall, and N. G. Wright, Materials Science Forum **897**, 254 (2017).

- ⁴⁰W. J. Schaffer, G. H. Negley, K. G. Irvine, and J. W. Palmour, MRS Proceedings **339**, 595 (1994).
- ⁴¹M. Bakowski, U. Gustafsson, and U. Lindefelt, physica status solidi (a) **162**, 421 (1997).
- ⁴²R. Mickevičius and J. H. Zhao, Journal of Applied Physics **83**, 3161 (1998).
- ⁴³H. Linewih, S. Dimitrijev, and K. Y. Cheong, Microelectronics Reliability **43**, 405 (2003).
- ⁴⁴T. Ayalew, *SiC Semiconductor Devices Technology, Modeling, and Simulation*, Ph.D. thesis, TU Wien (2004).
- ⁴⁵T. McNutt, A. Hefner, H. Mantooth, J. Duliere, D. Berning, and R. Singh, IEEE Transactions on Power Electronics **19**, 573 (2004).
- ⁴⁶A. Pérez-Tomás, P. Brosselard, P. Godignon, J. Millán, N. Mestres, M. R. Jennings, J. A. Covington, and P. A. Mawby, Journal of Applied Physics **100**, 114508 (2006).
- ⁴⁷H.-Y. Cha and P. M. Sandvik, Japanese Journal of Applied Physics **47**, 5423 (2008).
- ⁴⁸B. Buono, Simulation and Characterization of Silicon Carbide Power Bipolar Junction Transistors, Ph.D. thesis, KTH Royal Institute of Technology (2012).
- ⁴⁹T. Hatakeyama, K. Fukuda, and H. Okumura, IEEE Transactions on Electron Devices **60**, 613 (2013).
- ⁵⁰G. Liaugaudas, D. Dargis, P. Kwasnicki, H. Peyre, R. Arvinte, S. Juillaguet, M. Zielinski, and K. Jarašiūnas, Materials Science Forum 821–823, 249 (2015).
- ⁵¹R. K. Sharma, P. Hazdra, and S. Popelka, IEEE Transactions on Nuclear Science **62**, 534 (2015).
- ⁵²A. Arvanitopoulos, N. Lophitis, S. Perkins, K. N. Gyftakis, M. Belanche Guadas, and M. Antoniou, in 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED) (IEEE, Tinos, Greece, 2017) pp. 565–571.
- ⁵³A. Naugarhiya, P. Wakhradkar, P. N. Kondekar, G. C. Patil, and R. M. Patrikar, Journal of Computational Electronics 16, 190 (2017).
- ⁵⁴H. Tanaka, S. Asada, T. Kimoto, and J. Suda, Journal of Applied Physics **123**, 245704 (2018).
- ⁵⁵T. Kimoto, in *Wide Bandgap Semiconductor Power Devices* (Elsevier, 2019) pp. 21–42.
- ⁵⁶Y. Huang, R. Wang, Y. Zhang, D. Yang, and X. Pi, Journal of Applied Physics **131**, 185703 (2022).
- ⁵⁷R. Ishikawa, H. Tanaka, M. Kaneko, and T. Kimoto, physica status solidi (b) **260**, 2300275 (2023).
- ⁵⁸R. Ishikawa, H. Tanaka, M. Kaneko, and T. Kimoto, Journal of Applied Physics 135, 075704

(2024).

- ⁵⁹C. Codreanu, M. Avram, E. Carbunescu, and E. Iliescu, Materials Science in Semiconductor Processing **3**, 137 (2000).
- ⁶⁰T. Hatakeyama, T. Watanabe, M. Kushibe, K. Kojima, S. Imai, T. Suzuki, T. Shinohe, T. Tanaka, and K. Arai, Materials Science Forum **433–436**, 443 (2003).
- ⁶¹X. Li, Y. Luo, L. Fursin, J. Zhao, M. Pan, P. Alexandrov, and M. Weiner, Solid-State Electronics **47**, 233 (2003).
- ⁶²Y. Negoro, T. Kimoto, H. Matsunami, F. Schmid, and G. Pensl, Journal of Applied Physics **96**, 4916 (2004).
- ⁶³Y.-R. Zhang, B. Zhang, Z.-J. Li, and X.-C. Deng, Chinese Physics B 19, 067102 (2010).
- ⁶⁴M. L. Megherbi, F. Pezzimenti, L. Dehimi, M. A. Saadoune, and F. G. Della Corte, IEEE Transactions on Electron Devices **65**, 3371 (2018).
- ⁶⁵W. Götz, A. Schöner, G. Pensl, W. Suttrop, W. J. Choyke, R. Stein, and S. Leibenzeder, Journal of Applied Physics **73**, 3332 (1993).
- ⁶⁶T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva, and S. N. Yurkov, Semiconductor Science and Technology **17**, 974 (2002).
- ⁶⁷L. F. Albanese, *Characterization, Modeling and Simulation of 4H-SiC Power Diodes*, Ph.D. thesis, UniversitàdegliStudidiSalerno (2010).
- ⁶⁸S. N. Mohammad, A. V. Bemis, R. L. Carter, and R. B. Renbeck, Solid-State Electronics **36**, 1677 (1993).
- ⁶⁹M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, Journal of Applied Physics 87, 2890 (2000).
- ⁷⁰G. Masetti, M. Severi, and S. Solmi, IEEE Transactions on Electron Devices **30**, 764 (1983).
- ⁷¹C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 7, 1164 (1988).
- ⁷²X. Zhang and N. You, in 2018 IEEE 3rd International Conference on Integrated Circuits and Microsystems (ICICM) (IEEE, Shanghai, 2018) pp. 60–63.
- ⁷³F. Nallet, D. Planson, K. Isoird, M. Locatelli, and J. Chante, in *CAS '99 Proceedings. 1999 International Semiconductor Conference (Cat. No.99TH8389)*, Vol. 1 (IEEE, Sinaia, Romania, 1999) pp. 195–198.
- ⁷⁴M. Rambach, L. Frey, A. J. Bauer, and H. Ryssel, Materials Science Forum **527–529**, 827 (2006).
- ⁷⁵M. Rambach, A. J. Bauer, and H. Ryssel, physica status solidi (b) **245**, 1315 (2008).

⁷⁶H. Matsunami, Japanese Journal of Applied Physics **43**, 6835 (2004).

- ⁷⁷J. V. Berens, *Carrier Mobility and Reliability of 4H-SiC Trench MOSFETs*, Ph.D. thesis, TU Wien (2021).
- ⁷⁸H. Dixit, D. J. Lichtenwalner, A. Scholtze, J. H. Park, S. Rogers, S. Bubel, and S. H. Ryu, Materials Science Forum **1090**, 153 (2023).
- ⁷⁹G. Izzo, G. Litrico, L. Calcagno, G. Foti, and F. La Via, Journal of Applied Physics **104**, 093711 (2008).
- ⁸⁰F. La Via, G. Galvagno, F. Roccaforte, A. Ruggiero, and L. Calcagno, Applied Physics Letters
 87, 142105 (2005).
- ⁸¹S. Kagamihara, H. Matsuura, T. Hatakeyama, T. Watanabe, M. Kushibe, T. Shinohe, and K. Arai, Journal of Applied Physics **96**, 5601 (2004).
- ⁸²H. Matsuura, M. Komeda, S. Kagamihara, H. Iwata, R. Ishihara, T. Hatakeyama, T. Watanabe,
 K. Kojima, T. Shinohe, and K. Arai, Journal of Applied Physics 96, 2708 (2004).
- ⁸³V. Uhnevionak, *Simulation and Modeling of Silicon-Carbide Devices*, Ph.D. thesis, Friedrich-Alexander-Universität (2015).
- ⁸⁴K. Neimontas, T. Malinauskas, R. Aleksiejūnas, M. Sūdžius, K. Jarašiūnas, L. Storasta, J. P. Bergman, and E. Janzen, Semiconductor Science and Technology **21**, 952 (2006).
- ⁸⁵T. T. Mnatsakanov, L. I. Pomortseva, and S. N. Yurkov, Semiconductors 35, 394 (2001).
- ⁸⁶D. Klaassen, Solid-State Electronics **35**, 953 (1992).
- ⁸⁷S. K. Lee, *Processing and Characterization of Silicon Carbide (6H-SiC and 4H-SiC) Contacts for High Power and h...* (Mikroelektronik och informationsteknik, Kista, 2002).
- ⁸⁸B. Chen, Y. Yang, X. Xie, N. Wang, Z. Ma, K. Song, and X. Zhang, Chinese Science Bulletin 57, 4427 (2012).
- ⁸⁹T. Kimoto and J. A. Cooper, *Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications*, 1st ed. (Wiley, 2014).
- ⁹⁰N. Lophitis, A. Arvanitopoulos, S. Perkins, and M. Antoniou, in *Disruptive Wide Bandgap Semiconductors, Related Technologies, and Their Applications*, edited by Y. K. Sharma (In-Tech, 2018).
- ⁹¹S. Banerjee, in *Advances in Terahertz Technology and Its Applications*, edited by S. Das, N. Anveshkumar, J. Dutta, and A. Biswas (Springer Singapore, Singapore, 2021) pp. 153–172.
- ⁹²C. Canali, G. Majni, R. Minder, and G. Ottaviani, IEEE Transactions on Electron Devices **22**, 1045 (1975).

- ⁹³S. Jin, K. Lee, W. Choi, C. Park, S. Yi, H. Fujii, J. Yoo, Y. Park, J. Jeong, and D. S. Kim, IEEE Transactions on Electron Devices, 1 (2024).
- ⁹⁴A. E. Arvanitopoulos, M. Antoniou, S. Perkins, M. Jennings, M. B. Guadas, K. N. Gyftakis, and N. Lophitis, IEEE Transactions on Industry Applications 55, 4080 (2019).
- ⁹⁵C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi Quaranta, Solid-State Electronics 20, 77 (1977).
- ⁹⁶J. Wang and B. W. Williams, Semiconductor Science and Technology 14, 1088 (1999).
- ⁹⁷S. M. Sze and K. K. Ng, *Physics of Semiconductor Devices*, 3rd ed. (Wiley-Interscience, Hoboken, N.J, 2007).
- ⁹⁸K. Bertilsson, C. Harris, and H.-E. Nilsson, Solid-State Electronics **48**, 2103 (2004).
- ⁹⁹S. Rakheja, L. Huang, S. Hau-Riege, S. E. Harrison, L. F. Voss, and A. M. Conway, IEEE Journal of the Electron Devices Society 8, 1118 (2020).
- ¹⁰⁰A. Akturk, N. Goldsman, S. Potbhare, and A. Lelis, Journal of Applied Physics **105**, 033703 (2009).
- ¹⁰¹E. Bellotti, Advanced Modeling of Wide Band Gap Semiconductor Materials and Devices,
 Ph.D. thesis, Georgia Institute of Technology (1999).
- ¹⁰²E. Bellotti, H.-E. Nilsson, K. F. Brennan, P. P. Ruden, and R. Trew, Journal of Applied Physics 87, 3864 (2000).
- ¹⁰³K. Bertilsson, Simulation and Optimization of SiC Field Effect Transistors, Ph.D. thesis, Mikroelektronik och informationsteknik / KTH, Microelectronics and Information Technology, IMIT / KTH, Microelectronics and Information Technology, IMIT (2004).
- ¹⁰⁴M. Hjelm, H.-E. Nilsson, A. Martinez, K. F. Brennan, and E. Bellotti, Journal of Applied Physics 93, 1099 (2003).
- ¹⁰⁵H.-E. Nilsson, E. Bellotti, K. Brennan, and M. Hjelm, Materials Science Forum **338–342**, 765 (2000).
- ¹⁰⁶H.-E. Nilsson, U. Sannemo, and C. S. Petersson, Journal of Applied Physics 80, 3365 (1996).
- ¹⁰⁷B. Foutz, S. O'Leary, and M. Shur, in *High Power, Broadband, Linear, Solid State Amplifier* (Cornell University, 1998) p. 57.
- ¹⁰⁸V. Polyakov and F. Schwierz, IEEE Transactions on Electron Devices **48**, 512 (2001).
- ¹⁰⁹V. O. Turin, Solid-State Electronics **49**, 1678 (2005).
- ¹¹⁰J. Dorkel and Ph. Leturcq, Solid-State Electronics 24, 821 (1981).
- ¹¹¹S. C. Choo, IEEE Transactions on Electron Devices **19**, 954 (1972).

- ¹¹²S. Onoda, T. Ohshima, T. Hirao, K. Mishima, S. Hishiki, N. Iwamoto, and K. Kawano, IEEE Transactions on Nuclear Science **54**, 2706 (2007).
- ¹¹³S. Tripathi, C. Upadhyay, C. Nagaraj, A. Venkatesan, and K. Devan, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment **916**, 246 (2019).
- ¹¹⁴I.-R. Arvinte, *Investigation of Dopant Incorporation in Silicon Carbide Epilayers Grown by Chemical Vapor Deposition*, Ph.D. thesis, Universite Cote d'Azur (2017).
- ¹¹⁵G. Pensl, F. Schmid, F. Ciobanu, M. Laube, S. A. Reshanov, N. Schulze, K. Semmelroth,
 A. Schöner, G. Wagner, and H. Nagasawa, Materials Science Forum 433–436, 365 (2003).
- ¹¹⁶S. Asada, T. Okuda, T. Kimoto, and J. Suda, Applied Physics Express 9, 041301 (2016).
- ¹¹⁷S. Contreras, L. Konczewicz, P. Kwasnicki, R. Arvinte, H. Peyre, T. Chassagne, M. Zielinski,
 M. Kayambaki, S. Juillaguet, and K. Zekentes, Materials Science Forum 858, 249 (2016).
- ¹¹⁸G. Rutsch, R. P. Devaty, W. J. Choyke, D. W. Langer, and L. B. Rowland, Journal of Applied Physics **84**, 2062 (1998).
- ¹¹⁹G. Pensl and W. Choyke, Physica B: Condensed Matter 185, 264 (1993).
- ¹²⁰M. Schadt, *Transporteigenschaften von Elektronen Und Löchern in Siliciumkarbid*, Ph.D. thesis, FriedrichAlexander-Universität (1997).
- ¹²¹A. Parisini and R. Nipoti, Journal of Applied Physics **114**, 243703 (2013).
- ¹²²F. Schmid, M. Krieger, M. Laube, G. Pensl, and G. Wagner, in *Silicon Carbide*, edited by W. J. Choyke, H. Matsunami, and G. Pensl (Springer Berlin Heidelberg, Berlin, Heidelberg, 2004) pp. 517–536.
- ¹²³D. K. Schroder, *Semiconductor Material and Device Characterization*, 1st ed. (Wiley, 2005).
- ¹²⁴S. J. Bader, H. Lee, R. Chaudhuri, S. Huang, A. Hickman, A. Molnar, H. G. Xing, D. Jena, H. W. Then, N. Chowdhury, and T. Palacios, IEEE Transactions on Electron Devices 67, 4010 (2020).
- ¹²⁵M. Noguchi, T. Iwamatsu, H. Amishiro, H. Watanabe, K. Kita, and S. Yamakawa, in 2017 *IEEE International Electron Devices Meeting (IEDM)* (IEEE, San Francisco, CA, USA, 2017) pp. 9.3.1–9.3.4.
- ¹²⁶H. Tanaka and N. Mori, in 2024 International VLSI Symposium on Technology, Systems and Applications (VLSI TSA) (IEEE, HsinChu, Taiwan, 2024) pp. 1–2.
- ¹²⁷C. Weitzel, J. Palmour, C. Carter, and K. Nordquist, IEEE Electron Device Letters **15**, 406 (1994).

- ¹²⁸H.-Y. Cha, Y. C. Choi, L. F. Eastman, M. G. Spencer, L. Ardaravicius, A. Matulionis, and O. Kiprijanovic, Journal of Electronic Materials **34**, 330 (2005).
- ¹²⁹Y. Choi, H.-Y. Cha, L. Eastman, and M. Spencer, IEEE Transactions on Electron Devices 52, 1940 (2005).
- ¹³⁰Q. Zhang, A. Q. Huang, J. Wang, C. Jonas, R. Callanan, J. J. Sumakeris, S.-H. Ryu, M. Das,
 A. Agarwal, and J. Palmour, IEEE Transactions on Electron Devices 55, 1912 (2008).
- ¹³¹H. A. Mantooth, K. Peng, E. Santi, and J. L. Hudgins, IEEE Transactions on Electron Devices
 62, 423 (2015).
- ¹³²C. Persson and A. Ferreira Da Silva, in *Optoelectronic Devices: III Nitrides* (Elsevier, 2005) pp. 479–559.
- ¹³³R. Trew, J.-B. Yan, and P. Mock, Proceedings of the IEEE **79**, 598 (1991).
- ¹³⁴S. Murray and K. Roenker, Solid-State Electronics 46, 1495 (2002).
- ¹³⁵J. Vobecky, P. Hazdra, S. Popelka, and R. K. Sharma, IEEE Transactions on Electron Devices62, 1964 (2015).
- ¹³⁶N. Wright, in *IEE Colloquium on New Developments in Power Semiconductor Devices*, Vol. 1996 (IEE, London, UK, 1996) pp. 6–6.
- ¹³⁷N. G. Wright, D. Morrison, C. M. Johnson, and A. G. O'Neill, Materials Science Forum 264–268, 917 (1998).
- ¹³⁸K. Bertilsson, H.-E. Nilsson, M. Hjelm, C. Petersson, P. Käckell, and C. Persson, Solid-State Electronics 45, 645 (2001).
- ¹³⁹R. P. Joshi, Journal of Applied Physics 78, 5518 (1995).
- ¹⁴⁰C.-Y. Cheng and D. Vasileska, Journal of Applied Physics **127**, 155702 (2020).
- ¹⁴¹J. L. Vasconcelos, C. G. Rodrigues, and R. Luzzi, Materials Science and Engineering: B 249, 114426 (2019).
- ¹⁴²A. Martinez, U. Lindefelt, M. Hjelm, and H.-E. Nilsson, Journal of Applied Physics 91, 1359 (2002).
- ¹⁴³H. Iwata and K. M. Itoh, Materials Science Forum **338–342**, 729 (2000).
- ¹⁴⁴T. Kinoshita, K. M. Itoh, J. Muto, M. Schadt, G. Pensl, and K. Takeda, Materials Science Forum 264–268, 295 (1998).
- ¹⁴⁵E. Belas, M. Betušiak, R. Grill, P. Praus, M. Brynza, J. Pipek, and P. Moravec, Journal of Alloys and Compounds **904**, 164078 (2022).
- ¹⁴⁶L. Ardaravičius, A. Matulionis, O. Kiprijanovic, J. Liberis, H.-Y. Cha, L. F. Eastman, and

M. G. Spencer, Applied Physics Letters 86, 022107 (2005).

- ¹⁴⁷I. Khan and J. A. Cooper, Materials Science Forum **264–268**, 509 (1998).
- ¹⁴⁸I. Khan and J. A. Cooper, Materials Science Forum **338–342**, 761 (2000).
- ¹⁴⁹I. Khan and J. Cooper, IEEE Transactions on Electron Devices **47**, 269 (2000).
- ¹⁵⁰V. Jaiswal and P. Vigneshwara Raja, IEEE Transactions on Nuclear Science, 1 (2024).
- ¹⁵¹S. Nakashima and H. Harima, physica status solidi (a) **162**, 39 (1997).
- ¹⁵²M. K. Mainali, P. Dulal, B. Shrestha, E. Amonette, A. Shan, and N. J. Podraza, Surface Science Spectra **31**, 026003 (2024).
- ¹⁵³N. T. Son, W. M. Chen, O. Kordina, A. O. Konstantinov, B. Monemar, E. Janzén, D. M. Hofman, D. Volm, M. Drechsler, and B. K. Meyer, Applied Physics Letters 66, 1074 (1995).
- ¹⁵⁴D. Werber, P. Borthen, and G. Wachutka, Materials Science Forum **556–557**, 905 (2007).
- ¹⁵⁵D. L. Barrett and R. B. Campbell, Journal of Applied Physics 38, 53 (1967).
- ¹⁵⁶A. A. Burk, M. J. O'Loughlin, and S. Mani, Materials Science Forum 264–268, 83 (1998).
- ¹⁵⁷W. Choyke and G. Pensl, MRS Bulletin 22, 25 (1997).
- ¹⁵⁸S. Contreras, M. Zielinski, L. Konczewicz, C. Blanc, S. Juillaguet, R. Müller, U. Künecke, P. J. Wellmann, and J. Camassel, Materials Science Forum **527–529**, 633 (2006).
- ¹⁵⁹H. Fujihara, J. Suda, and T. Kimoto, Japanese Journal of Applied Physics 56, 070306 (2017).
- ¹⁶⁰A. Galeckas, P. Grivickas, V. Grivickas, V. Bikbajevas, and J. Linnros, physica status solidi (a)**191**, 613 (2002).
- ¹⁶¹A. Itoh, H. Akita, T. Kimoto, and H. Matsunami, Applied Physics Letters 65, 1400 (1994).
- ¹⁶²L. Kasamakova-Kolaklieva, L. Storasta, I. G. Ivanov, B. Magnusson, S. Contreras, C. Consejo,
 J. Pernot, M. Zielinski, and E. Janzén, Materials Science Forum 457–460, 677 (2004).
- ¹⁶³T. Kimoto, S. Nakazawa, K. Hashimoto, and H. Matsunami, Applied Physics Letters **79**, 2761 (2001).
- ¹⁶⁴M. Laube, F. Schmid, K. Semmelroth, G. Pensl, R. P. Devaty, W. J. Choyke, G. Wagner, and M. Maier, in *Silicon Carbide*, edited by W. J. Choyke, H. Matsunami, and G. Pensl (Springer Berlin Heidelberg, Berlin, Heidelberg, 2004) pp. 493–515.
- ¹⁶⁵G. Lomakina, G. F. Kholuyanov, R. Verenehikova, E. Mokhov, and Y. A. Vodakov, Sov. Phys. Semiconductors 6, 988 (1972).
- ¹⁶⁶H. Matsunami and T. Kimoto, Materials Science and Engineering: R: Reports 20, 125 (1997).
- ¹⁶⁷H. Matsunami, Proceedings of the Japan Academy, Series B 96, 235 (2020).
- ¹⁶⁸R. Nipoti, R. Scaburri, A. Hallén, and A. Parisini, Journal of Materials Research 28, 17 (2013).

- ¹⁶⁹G. Pensl, F. Ciobanu, T. Frank, M. Krieger, S. Reshanov, F. Schmid, and M. Weidner, International Journal of High Speed Electronics and Systems 15, 705 (2005).
- ¹⁷⁰M. Schadt, G. Pensl, R. P. Devaty, W. J. Choyke, R. Stein, and D. Stephani, Applied Physics Letters **65**, 3120 (1994).
- ¹⁷¹A. Schöner, *Elektrische Charakterisierung von Flachen Und Tiefen Störstellen in 4H-, 6H- Und 15R-Siliziumkarbid*, Ph.D. thesis, FriedrichAlexander-Universität (1994).
- ¹⁷²A. Schöner, S. Karlsson, T. Schmitt, N. Nordell, M. Linnarsson, and K. Rottner, Materials Science and Engineering: B 61–62, 389 (1999).
- ¹⁷³R. Siergiej, R. Clarke, S. Sriram, A. Agarwal, R. Bojko, A. Morse, V. Balakrishna, M. MacMillan, A. Burk, Jr, and C. Brandt, Materials Science and Engineering: B 61–62, 9 (1999).
- ¹⁷⁴P. Terziyska, C. Blanc, J. Pernot, H. Peyre, S. Contreras, G. Bastide, J. L. Robert, J. Camassel,
 E. Morvan, C. Dua, and C. C. Brylinski, physica status solidi (a) 195, 243 (2003).
- ¹⁷⁵G. Rutsch, R. P. Devaty, W. J. Choyke, D. Langer, L. Rowland, E. Niemann, and F. Wischmeyer, Materials Science Forum **338–342**, 733 (2000).
- ¹⁷⁶H. Habib, N. G. Wright, and A. B. Horsfall, Advanced Materials Research **413**, 229 (2011).
- ¹⁷⁷M. Willander, M. Friesel, Q.-u. Wahab, and B. Straumal, Journal of Materials Science: Materials in Electronics **17**, 1 (2006).
- ¹⁷⁸A. Elasser, M. Kheraluwala, M. Ghezzo, R. Steigerwald, N. Evers, J. Kretchmer, and T. Chow, IEEE Transactions on Industry Applications **39**, 915 (2003).
- ¹⁷⁹R. Trew, Proceedings of the IEEE **90**, 1032 (2002).
- ¹⁸⁰A. Elasser, M. Ghezzo, N. Krishnamurthy, J. Kretchmer, A. Clock, D. Brown, and T. Chow, Solid-State Electronics 44, 317 (2000).
- ¹⁸¹R. J. Trew, physica status solidi (a) **162**, 409 (1997).
- ¹⁸²J. I. Pankove, ed., *Electroluminescence*, softcover reprint of the original 1st ed. 1977 ed. (Springer Berlin, Berlin, 2014).
- ¹⁸³V. R. Manikam and Kuan Yew Cheong, IEEE Transactions on Components, Packaging and Manufacturing Technology 1, 457 (2011).
- ¹⁸⁴J. Hudgins, G. Simin, E. Santi, and M. Khan, IEEE Transactions on Power Electronics 18, 907 (2003).
- ¹⁸⁵N. Zhang, *High Voltage GaN HEMTs with Low On-Resistance for Switching Applications*, Ph.D. thesis, UNIVERSITY of CALIFORNIA, Santa Barbara (2002).
- ¹⁸⁶R. Kemerley, H. Wallace, and M. Yoder, Proceedings of the IEEE **90**, 1059 (2002).

- ¹⁸⁷G. Pacchioni, L. Skuja, and D. L. Griscom, eds., *Defects in SiO2 and Related Dielectrics: Science and Technology* (Springer Netherlands, Dordrecht, 2000).
- ¹⁸⁸V. V. Afanas'ev, A. Stesmans, M. Bassler, G. Pensl, and M. J. Schulz, Applied Physics Letters 76, 336 (2000).
- ¹⁸⁹WJ. Choyke and L. Patrick, in *In: Silicon Carbide-1973; Proceedings of the Third International Conference* (1974) pp. 261–283.
- ¹⁹⁰M. Su, Power Devices and Integrated Circuits Based on 4H-SiC Lateral JFETs, Ph.D. thesis, New Brunswick Rutgers, New Jersey (2010).
- ¹⁹¹P. Masri, Surface Science Reports 48, 1 (2002).
- ¹⁹²A. Itoh, T. K. Tsunenobu Kimoto, and H. M. Hiroyuki Matsunami, Japanese Journal of Applied Physics 35, 4373 (1996).
- ¹⁹³A. Itoh, T. Kimoto, and H. Matsunami, IEEE Electron Device Letters 16, 280 (1995).
- ¹⁹⁴T. Kimoto, A. Itoh, and H. Matsunami, physica status solidi (b) **202**, 247 (1997).
- ¹⁹⁵V. Soler, *Design and Process Developments towards an Optimal 6.5 kV SiC Power MOSFET*,Ph.D. thesis, Universitat Politecnica de Catalunya (2019).
- ¹⁹⁶M. De Napoli, Frontiers in Physics **10**, 898833 (2022).
- ¹⁹⁷A. Hassan, Y. Savaria, and M. Sawan, IEEE Access 6, 78790 (2018).
- ¹⁹⁸S. Rybalka, E.Yu. Krayushkina, A. Demidov, O. Shishkina, and B. Surin, International Journal of Physical Research **5**, 11 (2017).
- ¹⁹⁹H. Choi, "Overview of Silicon Carbide Power Devices," (2016).
- ²⁰⁰P. G. Neudeck, in *Extreme Environment Electronics* (CRC Press, Taylor & Francis Group, 2013) pp. 225–232.
- ²⁰¹H. A. Mantooth, in *Extreme Environment Electronics* (CRC Press, Taylor & Francis Group, 2013) pp. 243–252.
- ²⁰²F. Nava, G. Bertuccio, A. Cavallini, and E. Vittone, Measurement Science and Technology 19, 102001 (2008).
- ²⁰³J. H. Zhao, K. Sheng, and R. C. Lebron-Velilla, "SILICON CARBIDE SCHOTTKY BAR-RIER DIODE," in *Sic Materials and Devices*, Vol. 40 (WORLD SCIENTIFIC, 2006) pp. 117– 162.
- ²⁰⁴M. E. Levinshtein, T. T. Mnatsakanov, P. A. Ivanov, R. Singh, J. W. Palmour, and S. N. Yurkov, Solid-State Electronics 48, 807 (2004).
- ²⁰⁵B. Ng, J. David, R. Tozer, G. Rees, Feng Yan, Jian H. Zhao, and M. Weiner, IEEE Transactions

on Electron Devices 50, 1724 (2003).

- ²⁰⁶A. A. Lebedev, Semiconductors **33**, 107 (1999).
- ²⁰⁷A. Burk, M. O'Loughlin, R. Siergiej, A. Agarwal, S. Sriram, R. Clarke, M. MacMillan, V. Balakrishna, and C. Brandt, Solid-State Electronics 43, 1459 (1999).
- ²⁰⁸A. Agarwal, S. Seshadri, J. Casady, S. Mani, M. MacMillan, N. Saks, A. Burk, G. Augustine, V. Balakrishna, P. Sanger, C. Brandt, and R. Rodrigues, Diamond and Related Materials 8, 295 (1999).
- ²⁰⁹V. Chelnokov and A. Syrkin, Materials Science and Engineering: B 46, 248 (1997).
- ²¹⁰A. Agarwal, G. Augustine, V. Balakrishna, C. Brandt, A. Burk, Li-Shu Chen, R. Clarke, P. Esker, H. Hobgood, R. Hopkins, A. Morse, L. Rowland, S. Seshadri, R. Siergiej, T. Smith, and S. Sriram, in *International Electron Devices Meeting. Technical Digest* (IEEE, San Francisco, CA, USA, 1996) pp. 225–230.
- ²¹¹P. G. Neudeck, Journal of Electronic Materials **24**, 283 (1995).
- ²¹²N. S. Saks, S. S. Mani, and A. K. Agarwal, Applied Physics Letters 76, 2250 (2000).
- ²¹³R. Choudhary, M. Mehta, R. Singh Shekhawat, S. Singh, and D. Singh, Materials Today:
 Proceedings 46, 5889 (2021).
- ²¹⁴P. Luo and S. N. E. Madathil, IEEE Transactions on Electron Devices **67**, 5621 (2020).
- ²¹⁵M. Cabello, V. Soler, G. Rius, J. Montserrat, J. Rebollo, and P. Godignon, Materials Science in Semiconductor Processing 78, 22 (2018).
- ²¹⁶S. Fujita, Japanese Journal of Applied Physics **54**, 030101 (2015).
- ²¹⁷N. Kaminski and O. Hilt, IET Circuits, Devices & Systems 8, 227 (2014).
- ²¹⁸J. A. Pellish and L. M. Cohn, in *Extreme Environment Electronics* (CRC Press, Taylor & Francis Group, 2013) pp. 49–58.
- ²¹⁹M. Ostling, R. Ghandi, and C.-M. Zetterling, in 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs (IEEE, San Diego, CA, USA, 2011) pp. 10–15.
- ²²⁰M. Östling, Science China Information Sciences **54**, 1087 (2011).
- ²²¹K. G. Menon, A. Nakajima, L. Ngwendson, and E. M. Sankara Narayanan, IEEE Electron Device Letters **32**, 1272 (2011).
- ²²²C. Buttay, D. Planson, B. Allard, D. Bergogne, P. Bevilacqua, C. Joubert, M. Lazar, C. Martin,
 H. Morel, D. Tournier, and C. Raynaud, Materials Science and Engineering: B 176, 283 (2011).
- ²²³N. Kaminski, 2009 13th European Conference on Power Electronics and Applications 8 (2009).
- ²²⁴J. Millán, IET Circuits, Devices & Systems 1, 372 (2007).

- ²²⁵D. T. Morisette, *Development of Robust Power Schottky Barrier Diodes in Silicon Carbide*,
 Ph.D. thesis, Purdue University (2001).
- ²²⁶X. Guo, Q. Xun, Z. Li, and S. Du, Micromachines 10, 406 (2019).
- ²²⁷J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van De Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, Advanced Electronic Materials 4, 1600501 (2018).
- ²²⁸S. J. Pearton, X. Xia, F. Ren, M. A. J. Rasel, S. Stepanoff, N. Al-Mamun, A. Haque, and D. E. Wolfe, Journal of Vacuum Science & Technology B **41**, 030802 (2023).
- ²²⁹S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, Applied Physics Reviews 5, 011301 (2018).
- ²³⁰J. Lutz, U. Scheuermann, H. Schlangenotto, and R. De Doncker, "Power Semiconductor Devices—Key Components for Efficient Electrical Energy Conversion Systems," in *Semiconductor Power Devices* (Springer International Publishing, Cham, 2018) pp. 1–20.
- ²³¹M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, physica status solidi
 (a) 211, 21 (2014).
- ²³²S. Sandeep and R. Komaragiri, in *India International Conference on Power Electronics 2010* (*IICPE2010*) (IEEE, New Delhi, India, 2011) pp. 1–5.
- ²³³R. Gerhardt, ed., Properties and Applications of Silicon Carbide (IntechOpen, 2011).
- ²³⁴B. Ozpineci, "Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications," Tech. Rep. ORNL/TM-2003/257, 885849 (Oak Ridge National Laboratory, 2004).
- ²³⁵A. Powell and L. Rowland, Proceedings of the IEEE **90**, 942 (2002).
- ²³⁶M. Werner and W. Fahrner, IEEE Transactions on Industrial Electronics **48**, 249 (2001).

²³⁷A. O. Evwaraye, S. R. Smith, and W. C. Mitchel, Journal of Applied Physics **79**, 7726 (1996).

- ²³⁸J. Casady and R. Johnson, Solid-State Electronics **39**, 1409 (1996).
- ²³⁹M. Yoder, IEEE Transactions on Electron Devices **43**, 1633 (1996).
- ²⁴⁰G. Lomakina, in *In: Silicon Carbide-1973; Proceedings of the Third International Conference* (1974) pp. 520–526.
- ²⁴¹T. P. Chow, I. Omura, M. Higashiwaki, H. Kawarada, and V. Pala, IEEE Transactions on Electron Devices **64**, 856 (2017).

- ²⁴²G. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley, eds., *Springer Handbook of Crystal Growth* (Springer Berlin Heidelberg, Berlin, Heidelberg, 2010).
- ²⁴³P. B. Klein, physica status solidi (a) **206**, 2257 (2009).
- ²⁴⁴M. W. Cole and P. Joshi, in *Silicon Carbide*, edited by Z. C. Feng and J. H. Zhao (Springer Berlin Heidelberg, Berlin, Heidelberg, 2004) pp. 517–536.
- ²⁴⁵T. P. Chow, N. Ramungul, J. Fedison, and Y. Tang, in *Silicon Carbide*, edited by W. J. Choyke, H. Matsunami, and G. Pensl (Springer Berlin Heidelberg, Berlin, Heidelberg, 2004) pp. 737–767.
- ²⁴⁶A. Elasser and T. Chow, Proceedings of the IEEE **90**, 969 (2002).
- ²⁴⁷V. Dmitriev, T. P. Chow, S. P. DenBaars, M. S. Shur, and M. G. Spencer, "High-Temperature Electronics in Europe:," Tech. Rep. (Defense Technical Information Center, Fort Belvoir, VA, 2000).
- ²⁴⁸T. Chow, V. Khemka, J. Fedison, N. Ramungul, K. Matocha, Y. Tang, and R. Gutmann, Solid-State Electronics 44, 277 (2000).
- ²⁴⁹T. P. Chow, Materials Science Forum **338–342**, 1155 (2000).
- ²⁵⁰T. P. Chow, N. Ramungul, and M. Ghezzo, MRS Proceedings 483, 89 (1997).
- ²⁵¹T. P. Chow and M. Ghezzo, MRS Proceedings **423**, 9 (1996).
- ²⁵²D. Mukherjee and M. Neto, *Recent Advances in SiC/Diamond Composite Devices* (IOP Publishing, 2023).
- ²⁵³M. B. Wijesundara and R. Azevedo, *Silicon Carbide Microsystems for Harsh Environments*, MEMS Reference Shelf, Vol. 22 (Springer New York, New York, NY, 2011).
- ²⁵⁴X. Zhu, ALTERNATIVE GROWTH AND INTERFACE PASSIVATION TECHNIQUES FOR SiO2 ON 4H-SiC, Ph.D. thesis, Auburn University (2008).
- ²⁵⁵P. G. Neudeck (CRC Press, 2006).
- ²⁵⁶P. Neudeck, in *Encyclopedia of Materials: Science and Technology* (Elsevier, 2001) pp. 8508– 8519.
- ²⁵⁷C. Weitzel, Materials Science Forum **264–268**, 907 (1998).
- ²⁵⁸S. Sriram, R. R. Siergiej, R. C. Clarke, A. K. Agarwal, and C. D. Brandt, physica status solidi
 (a) 162, 441 (1997).
- ²⁵⁹C. Weitzel, J. Palmour, C. Carter, K. Moore, K. Nordquist, S. Allen, C. Thero, and M. Bhatnagar, IEEE Transactions on Electron Devices 43, 1732 (1996).
- ²⁶⁰C.-M. Zetterling, ed., Process Technology for Silicon Carbide Devices, EMIS Processing Series

No. 2 (Institution of Electrical Engineers, London, 2002).

- ²⁶¹J. Palmour, R. Singh, R. Glass, O. Kordina, and C. Carter, in *Proceedings of 9th International Symposium on Power Semiconductor Devices and IC's* (IEEE, Weimar, Germany, 1997) pp. 25–32.
- ²⁶²I. Capan, Electronics **11**, 532 (2022).
- ²⁶³G. Rescher, Behavior of SiC-MOSFETs under Temperature and Voltage Stress, Ph.D. thesis, TU Wien (2018).
- ²⁶⁴T. Kimoto, Japanese Journal of Applied Physics **54**, 040103 (2015).
- ²⁶⁵C. Langpoklakpam, A.-C. Liu, K.-H. Chu, L.-H. Hsu, W.-C. Lee, S.-C. Chen, C.-W. Sun, M.-H. Shih, K.-Y. Lee, and H.-C. Kuo, Crystals 12, 245 (2022).
- ²⁶⁶G. Liu, B. R. Tuttle, and S. Dhar, Applied Physics Reviews 2, 021307 (2015).
- ²⁶⁷R. Raghunathan and B. Baliga, IEEE Electron Device Letters **19**, 71 (1998).
- ²⁶⁸F. C. Beyer, *Deep Levels in SiC*, Ph.D. thesis, Linköping University (2011).
- ²⁶⁹M. E. Levinshtein, S. L. Rumyantsev, and M. Shur, eds., *Properties of Advanced Semiconduc*tor Materials: GaN, AlN, InN, BN, SiC, SiGe (Wiley, New York, 2001).
- ²⁷⁰P. Bhatnagar, A. B. Horsfall, N. G. Wright, C. M. Johnson, K. V. Vassilevski, and A. G. O'Neill, Solid-State Electronics **49**, 453 (2005).
- ²⁷¹S. Bellone and L. Di Benedetto, IEEE Transactions on Power Electronics **29**, 2174 (2014).
- ²⁷²L. Di Benedetto, G. D. Licciardo, R. Nipoti, and S. Bellone, IEEE Electron Device Letters 35, 244 (2014).
- ²⁷³I. Institute, "Silicon Carbide," http://www.ioffe.ru/SVA/NSM/Semicond/SiC/index.html (2023).
- ²⁷⁴G. Lomakina and Y. A. Vodakov, Sov. Phys. Solid State **15**, 83 (1973).
- ²⁷⁵D. Johannesson, M. Nawaz, and H. P. Nee, Materials Science Forum 963, 670 (2019).
- ²⁷⁶Q. Chen, L. Yang, S. Wang, Y. Zhang, Y. Dai, and Y. Hao, Applied Physics A **118**, 1219 (2015).
- ²⁷⁷R. Mickevičius and J. H. Zhao, Materials Science Forum **264–268**, 291 (1998).
- ²⁷⁸M. Ruff, H. Mitlehner, and R. Helbig, IEEE Transactions on Electron Devices **41**, 1040 (1994).
- ²⁷⁹M. Roschke, F. Schwierz, G. Paasch, and D. Schipanski, Materials Science Forum 264–268, 965 (1998).
- ²⁸⁰S. Balachandran, T. P. Chow, and A. K. Agarwal, Materials Science Forum **483–485**, 909 (2005).
- ²⁸¹S. Rao, E. D. Mallemace, and F. G. Della Corte, Electronics **11**, 1839 (2022).

- ²⁸²G. L. Harris and Inspec, eds., *Properties of Silicon Carbide*, EMIS Datareviews Series No. 13 (INSPEC, the Inst. of Electrical Engineers, London, 1995).
- ²⁸³C. Carter, Jr., V. Tsvetkov, R. Glass, D. Henshall, M. Brady, St.G. Müller, O. Kordina, K. Irvine, J. Edmond, H.-S. Kong, R. Singh, S. Allen, and J. Palmour, Materials Science and Engineering: B 61–62, 1 (1999).
- ²⁸⁴S. Nakashima and H. Harima, SILICON CARBIDE AND RELATED MATERIALS 1995 142, 269 (1996).
- ²⁸⁵M. Nawaz, Microelectronics Journal **41**, 801 (2010).
- ²⁸⁶M. Usman and M. Nawaz, Solid-State Electronics **92**, 5 (2014).
- ²⁸⁷F. Nallet, A. Senes, D. Planson, M. Locatelli, J. Chante, and J. Taboy, in *Proceedings IPEMC 2000. Third International Power Electronics and Motion Control Conference (IEEE Cat. No.00EX435)*, Vol. 1 (Int. Acad. Publishers, Beijing, China, 2000) pp. 396–401.
- ²⁸⁸T. Tamaki, G. G. Walden, Y. Sui, and J. A. Cooper, IEEE Transactions on Electron Devices 55, 1920 (2008).
- ²⁸⁹H. Liu, J. Wang, S. Liang, H. Yu, and W. Deng, Semiconductor Science and Technology 36, 025009 (2021).
- ²⁹⁰T. R. McNutt, in *Extreme Environment Electronics* (CRC Press, Taylor & Francis Group, 2013) pp. 409–416.
- ²⁹¹P. B. Shah and K. A. Jones, Journal of Applied Physics **84**, 4625 (1998).
- ²⁹²J. Wang and B. W. Williams, Semiconductor Science and Technology 13, 806 (1998).
- ²⁹³J. Zhao, X. Li, K. Tone, P. Alexandrov, M. Pan, and M. Weiner, Solid-State Electronics 47, 377 (2003).
- ²⁹⁴T. Yang, Y. Tan, C. Wang, X. Zhang, and X. Shi, "Simulation of the 4H-SiC Low Gain Avalanche Diode," (2022), arXiv:2206.10191 [physics].
- ²⁹⁵S. I. Maximenko, AIP Advances **13**, 105021 (2023).
- ²⁹⁶Y.-R. zhang, b. zhang, Z.-J. Li, X.-C. Deng, and X.-L. liu, Chinese Physics B 18, 3995 (2009).
- ²⁹⁷M. Khalid, S. Riaz, and S. Naseem, Communications in Theoretical Physics **58**, 577 (2012).
- ²⁹⁸D. Johannesson and M. Nawaz, IEEE Transactions on Power Electronics **31**, 4517 (2016).
- ²⁹⁹V. Tilak, K. Matocha, and G. Dunne, IEEE Transactions on Electron Devices **54**, 2823 (2007).
- ³⁰⁰S. Bellone, F. G. Della Corte, L. F. Albanese, and F. Pezzimenti, IEEE Transactions on Power Electronics **26**, 2835 (2011).
- ³⁰¹F. Pezzimenti, IEEE Transactions on Electron Devices **60**, 1404 (2013).

- ³⁰²M. L. Megherbi, L. Dehimi, W. terghini, F. Pezzimenti, and F. G. Della Corte, Courrier du Savoir 19, 71 (2015).
- ³⁰³Y. Zhou, Y. Li, and B. Wang, in 2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA) (IEEE, Fayetteville, AR, 2016) pp. 1–7.
- ³⁰⁴K. Zeghdar, L. Dehimi, F. Pezzimenti, S. Rao, and F. G. Della Corte, Japanese Journal of Applied Physics **58**, 014002 (2019).
- ³⁰⁵K. Zeghdar, L. Dehimi, F. Pezzimenti, M. L. Megherbi, and F. G. Della Corte, Journal of Electronic Materials 49, 1322 (2020).
- ³⁰⁶R. Nipoti, A. Parisini, G. Sozzi, M. Puzzanghera, A. Parisini, and A. Carnera, ECS Journal of Solid State Science and Technology 5, P621 (2016).
- ³⁰⁷D. Brosselard, Pierre ; Planson, *Conception, Réalisation et Caractérisation d'interrupteurs* (*Thyristors et JFETs*) *Haute Tension* (5kV) *En Carbure de Silicium*, Ph.D. thesis (2004).
- ³⁰⁸T. Hatakeyama, T. Watanabe, T. Shinohe, K. Kojima, K. Arai, and N. Sano, Applied Physics Letters **85**, 1380 (2004).
- ³⁰⁹V. I. Sankin and A. A. Lepneva, Materials Science Forum **338–342**, 769 (2000).
- ³¹⁰K. Vassilevski, K. Zekentes, A. Zorenko, and L. Romanov, IEEE Electron Device Letters **21**, 485 (2000).
- ³¹¹W. V. Muench and E. Pettenpaul, Journal of Applied Physics **48**, 4823 (1977).
- ³¹²A. A. Lebedev, *Radiation Effects in Silicon Carbide*, Materials Research Foundations No. volume 6 (2017) (Materials Research Forum LLC, Millersville, PA, USA, 2017).
- ³¹³S. Reshanov, *Device-relevant defect centers and minority carrier lifetime in 3C-, 4H- and 6H-SiC*, Ph.D. thesis, Friedrich-Alexander-Universität, Erlangen-Nürnberg (2005).
- ³¹⁴R. Han, X. Xu, X. Hu, N. Yu, J. Wang, Y. Tian, and W. Huang, Optical Materials 23, 415 (2003).
- ³¹⁵S. Doğan, F. Yun, C. Roberts, J. Parish, D. Huang, R. E. Myers, M. Smith, S. E. Saddow, B. Ganguly, and H. Morkoç, MRS Proceedings 764, C7.2 (2003).
- ³¹⁶M. Bhatnagar and B. Baliga, IEEE Transactions on Electron Devices **40**, 645 (1993).
- ³¹⁷J. A. Powell and L. G. Matus, in *Amorphous and Crystalline Silicon Carbide II*, Vol. 43, edited by H. K. V. Lotsch, M. M. Rahman, C. Y.-W. Yang, and G. L. Harris (Springer Berlin Heidelberg, Berlin, Heidelberg, 1989) pp. 14–19.
- ³¹⁸N. Fletcher, Proceedings of the IRE **45**, 862 (1957).