TCAD Parameters for 4H-SiC: A Review

Jürgen Burin,¹ Philipp Gaggl,¹ Simon Waid,¹ Andreas Gsponer,¹ and Thomas Bergauer¹ Institute of High Energy Physics, Austrian Academy of Sciences, Nikolsdorfer Gasse 18, 1050 Wien

(*e-mail: juergen.burin@oeaw.ac.at)

(Dated: 27 September 2024)

In this paper we review the models and their parameters to describe the relative permittivity, bandgap, impact ionization, mobility, charge carrier recombination/effective masses and incomplete dopand ionization of 4H silicon carbide in computer simulations. We aim to lower the entrance barrier for newcomers and provide a critical evaluation of the status quo to identify shortcomings and guide future research. The review reveals a rich set of often diverging values in literature based on a variety of calculation and measurement methods. Although research for all the selected parameters is still active, we show that sometimes old values or those determined for other kinds of silicon carbide are commonly used.

Keywords: 4H-SiC, TCAD simulations, simulation parameters, silicon carbide

I. RELATIVE PERMITTIVITY

The permittivity ε describes the dielectric properties that influence electromagnetic wave propagation within a material and their reflections on interfaces¹. These effects are, for example, essential to describe the impact of an external electric field, which determines the capacitance values in a device. In general, the user has to provide the relative permittivity $\varepsilon_r = \varepsilon/\varepsilon_0$, i.e., the ratio compared to the vacuum permittivity $\varepsilon_0 = 8.854 \times 10^{-12} \,\mathrm{Fm}^{-1}$, to the TCAD tools.

A. Theory

In the frequency domain, the complex relative permittivity can be written as

$$\varepsilon_{\mathbf{r}}^{*}(\boldsymbol{\omega}) = \varepsilon'(\boldsymbol{\omega}) + \mathrm{i}\varepsilon''(\boldsymbol{\omega})$$

The real part ε' represents the energy stored in the material when exposed to an electric field and the imaginary part ε'' the losses (e.g., absorption and attenuation)¹. ε' and ε'' are tightly interconnected via the Kramers-Kronig (KK) relation²

$$\varepsilon'(\omega) = 1 + \frac{2}{\pi} \int_0^\infty \frac{\omega' \varepsilon''(\omega')}{\omega'^2 - \omega^2} d\omega'$$
(1a)

$$\varepsilon''(\omega) = -\frac{2\omega}{\pi} \int_0^\infty \frac{\varepsilon'(\omega')}{\omega'^2 - \omega^2} d\omega'$$
(1b)

In TCAD simulations of semiconductor devices ε'' is of diminishing importance, but ε' is required to calculate capacitances or the electric field distribution. Consequently, we will focus on ε' in the sequel.

In the literature the static (ε_s) and high-frequency resp. optical (ε_∞) relative permittivity are distinguished. The former is $\varepsilon'(\omega \to 0)$ but a definition of the latter is more complicated. It denotes ε' at the end of the reststrahlen range towards higher frequencies, where the real part of the refractive index is null³. In publications that focus on optical high-frequency analysis ε_∞ is sometimes denoted as $\varepsilon'(0)^4$, which must not be confused with ε_s . These inconsistencies were explained in the following fashion⁵: "We shall use ε_∞ to denote the extrapolation ... to zero frequency. This somewhat contradictory notation arose because ε_∞ the "optical" dielectric constant, was often set ... at a frequency much higher than the lattice frequency, but low compared with electronic transition frequencies. In many substances no suitable frequency exists, and it is preferable to extrapolate optical data to zero frequency ..." To clarify: ε_{∞} is measured at frequencies well above the long-wavelength longitudinal optical (LO) phonon frequency ω_{LO}^2 . ω_{LO} translates ε_s into ε_{∞} and vice versa in conjunction with the transversal optical (TO) phonon frequency ω_{TO} and the Lyddane-Sachs-Teller (LST) relationship⁶

$$\frac{\varepsilon_{\rm s}}{\varepsilon_{\infty}} = \left(\frac{\omega_{LO}}{\omega_{TO}}\right)^2. \tag{2}$$

For ω_{LO} we encountered the energy values 120 meV (approximately 29 THz)⁷⁻¹¹, 104 to 121 meV¹² and 104.2 meV¹³ in our search. Instead of the energy often the respective wave numbers are presented, i.e., (in cm⁻¹) $\omega_{\text{TO}} = 793$ and $\omega_{\text{LO}} = 974^{14}$, $\omega_{\text{LO}}^{\parallel} = 964.2$, $\omega_{\text{LO}}^{\perp} = 966.4$, $\omega_{\text{TO}}^{\parallel} = 783$ and $\omega_{\text{LO}} = 798^{15}$, $\omega_{\text{TO}} = 783$ and $\omega_{\text{LO}} = 964^{16}$ and $\omega_{\text{LO}} \in [967, 971]^{17}$.

B. Results

Various approaches have been used to determine the relative permittivity: One possibility are calculations using the density functional theory (DFT) based local density approximation (LDA)^{4,7,18–23} or the effective mass theory²⁴. With these the band structure and, thus, ε'' is calculated and then transformed into ε' using the Kramers-Kronig relations (Eq. (1)). Measurements use either some form of resonator (RES)^{25–27}, spectroscopy (SPEC)^{28–30}, spectroscopic ellipsometry (SE)^{31,32} or the refractive index (RI)^{5,15,33}. In some cases he transversal and longitudinal optical phonon frequencies is determined and used in the LST relationship (Eq. (2))^{31,32}. Furthermore, the tight relationship between relative permittivity and complex refractive index, i.e., $n^*(E) = \sqrt{\varepsilon(E)^2}$, with $E = \hbar \omega$, is utilized if ε'' is negligible. For fitting purposes the representation

$$n^2 = 1 + rac{arepsilon_g}{1 - (hf/E_{
m g})^2} pprox arepsilon_\infty + arepsilon_{
m g} \left(rac{hf}{E_{
m g}}
ight) \; .$$

with hf the photon energy, E_g an "average band gap" and ε_g proportional to the oscillator strength⁵, is used to extract $\varepsilon_{\infty}^{5,15,29,33}$. Finally, fitting to $\ln(J/E)^{34}$, with J the current density, is also deployed.

The relative permittivity was furthermore investigated at mm-wave frequencies (MM) (10 GHz to 10 THz)^{26,35–38} (nicely summarized by Li *et al.*²⁷, Yanagimoto *et al.*³⁹). Unfortunately, there are often fluctuations in the data or just single data points available, which makes an interpolation to zero frequency (= ε_s) not possible. For these reasons we had to discard most of the respective data. We also excluded publications whose values got refined in succeeding experiments^{40,41}, that

FIG. 1. Temperature dependency of the permittivity.

did not specify the investigated $polytype^{42-45}$ or where an extraction of the data values was not $possible^{46}$.

With the listed characterization approaches values in the range of [9.6, 10.65] for the static relative permittivity and [6.25, 7.61] for the high-frequency one have been achieved (Table I). In the table we also show two references that exclusively provide 6H values because these are often referenced for 4H investigations. Wherever necessary we calculated the relative permittivity according to $\varepsilon_{\rm s} = (\varepsilon_{\rm s}^{\parallel} \varepsilon_{\rm s}^{\perp 2})^{\frac{1}{3}}$ resp. $\varepsilon_{\infty} = (\varepsilon_{\infty}^{\parallel} \varepsilon_{\infty}^{\perp 2})^{\frac{1}{3}47-51}$, which far more often used than $\varepsilon_{\rm s} = (\varepsilon_{\rm s}^{\parallel} \varepsilon_{\rm s}^{\perp})^{\frac{1}{2}}$ proposed by Ivanov *et al.*²⁴.

In TCAD tools the permittivity is a constant although research showed that there is a frequency²⁵ and temperature^{25,32} dependency. For a frequency around 40 GHz Hartnett *et al.*²⁵ provided the approximation

$$\varepsilon_{\rm s}(T) = 9.7445 + 3.1862 \times 10^{-5} \, T - 6.3026 \times 10^{-7} \, T^2 + 5.9848 \times 10^{-9} \, T^3 - 8.2821 \times 10^{-12} \, T^4 \, ,$$

with the temperature *T* in K. Cheng, Yang, and Zheng³² approximated $\varepsilon_s^{\perp} = 9.82 + 4.87 \times 10^{-4} T$ and Li *et al.*³⁸ $\varepsilon_s^{\perp} = 9.77 * (1 + 6 \times 10^{-5} (T - 300 \text{ K}) \text{ and } \varepsilon_s^{\parallel} = 10.2 * (1 + 1 \times 10^{-4} (T - 300 \text{ K}))$. All approximations show an increase of the permittivity with temperature (Fig. 1).

ref.	\mathcal{E}_{s}	$arepsilon_{ m s}^{\parallel}$	$arepsilon_{ m s}^{\perp}$	\mathcal{E}_{∞}	$\epsilon_{\infty}^{\parallel}$	$\mathcal{E}_{\infty}^{\perp}$	method ^a	SiC	doping
[Patr70] ⁵	9.78 ^c	10.03	9.66	6.58 ^c	6.7	6.52	RI	6H	-
[Iked80] ³³	9.94 ^c	10.32	9.76	-	-	-	RI	4H	-
[Nino94] ³¹	9.83°	9.98	9.76	6.62 ^c	6.67	6.59	SE	6H	-
[Hari95] ¹⁵	-	-	-	6.63 ^c	6.78	6.56	RI	4H	-
[Karc96] ¹⁸	10.53 ^c	10.9	10.352	7.02 ^c	7.169	6.946	DFT-LDA	4H	-
[Well96] ¹⁹	-	-	-	7.02 ^c	7.17	6.95	DFT-LDA	4H	-
[Adol97] ²⁰	-	-	-	7.56 ^c	7.61	7.54	DFT-LDA	4H	-
[Ahuj02] ⁷	-	-	-	7.11 ^c	7.47	6.94	DFT-LDA	4H	n-type
[Peng04] ²¹	-	-	-	6.31 ^c	6.44	6.25	DFT	4H	-
[Pers05] ⁵²	9.73°	9.94	9.63	6.47 ^c	6.62	6.4	DFT-LDA	4H	intrinsic
[Chin06] ⁴	-	-	-	6.81	-	-	DFT-LDA	4H	intrinsic
[Dutt06] ³⁵	9.97 ± 0.02^b	-	-	-	-	-	ММ	4H	high purity
[Ivan06] ²⁴	9.93 ± 0.01	-	-	-	-	-	EMT	4H	intrinsic
[Hart11] ²⁵	9.77 ^d	-	-	-	-	-	RES	4H	high purity
[Jone11] ²⁶	9.6	-	-	-	-	-	RES	4H	high purity
[Naft16] ²⁸	10.11 ^c	10.53 ^f	9.91 ^f	-	-	-	SPEC	4H	undoped
[Cout17] ²³	10.13 ^c	10.65	9.88	-	-	-	DFT-LDA	4H	-
[Tare19] ²⁹	-	-	-	6.587 ± 0.003	-	-	SPEC	4H	-
[Chen22] ³²	9.97 ^g	-	-	-	-	-	SE	4H	-
[Gao22a] ³⁰	-	-	-	6.51	-	-	SPEC	4H	-
[Yang22a] ³⁴	10.21	-	-	-	-	-	$\ln(J/E)$	4H	p-type
[Li23] ²⁷	-	10.27 ± 0.03	-	-	-	-	RES	4H	high purity
[Li24b] ³⁸	9.91 ^c	10.20 ± 0.05	9.77 ± 0.01	-	-	-	RES	4H	high purity

TABLE I. Published relative permittivity values.

^a description of the single methods in the text

^b frequency range 131–145 GHz, for lower resp. higher frequencies $\varepsilon_s = 9.74$ was achieved

$$\epsilon \epsilon_{\rm s} = (\epsilon_{\rm s}^{\perp 2} \epsilon_{\rm s}^{\parallel})^{1/3}$$

^d temperature and frequency dependent

^e calculated from refractive index *n* as $\varepsilon_{s} = n^{2}$

^f wavelength-dependent refractive index presented

^g temperature dependent

C. Discussion

We identified two very influential publications, largely dominating the permittivity values found in literature. Ikeda, Matsunami, and Tanaka³³ published, based on measurements from Shaf-fer⁵³, in 1980 the first 4H-SiC permittivity data. Although these values are broadly used in liter-

ature^{22,54–58}, we never found a citation of that particular paper. Not even cross-references among the citing publications exist.

In 1970, so ten years prior to the first 4H values, Patrick and Choyke⁵ determined, based on measurements published in 1944⁵⁹, the permittivity of the 6H polytype. Many publications on 4H-SiC used these results (see Fig. 2) despite the deviating polytype. Some authors claimed that dedicated 4H values were not available^{12,48,60–63}, a mistake as we showed before. Nevertheless, it is still claimed up to this day³². This shows, how hard it is to get a comprehensive overview over 4H-SiC TCAD parameters. In contrast to early analysis, that clearly highlight that 6H values were used⁶⁴, the majority of publications simply adopts the parameters without further remark, which leaves the false impression that proper 4H values were used.

Rounding of the original values, e.g., $9.66 \rightarrow 9.7 \rightarrow 10^{67,78}$ (see Fig. 2), and mere typographical errors, e.g., turning 9.66 into 9.67^{87} (a comprehensive analysis of all encountered inconsistencies is shown in ??), expanded the range of available values (see Figs. 3 and 4). In these figures we connected those values where at least one direct connection could be found. Due to missing references we can, however, not guarantee that all authors made their selection based on the same data. In many cases, e.g., for the prominent values $\varepsilon_s = 9.7$ or $\varepsilon_s = 10$, it is not unreasonable to assume that simply the permittivity in one principal direction was picked.

An interesting case is $\varepsilon_s = 8.5584^{89,90}$, which is supposed to be based on $\varepsilon_s^{\perp} = 9.66$ and $\varepsilon_s^{\parallel} = 10.03^{88}$. We were not able to achieve this value analytically since the result is lower than both consitutents. Only when we added the high-frequency relative permittivity to the calculations we achieved a somewhat close value of 8. Such a combination is, however, not justifiable.

Overall, the missing awareness regarding 4H related permittivity values is striking. One explanation why the same old values are reused over and over again are the often very long citation (see Fig. 2). Combined with often missing references this makes it difficult to pinpoint the origin of a value and thus assess its suitability. Another interpretation of the achieved results is that the permittivity has little impact in TCAD simulations, such that somewhat accurate 6H values are already sufficient. Nevertheless, even if this was the case, we highly encourage the scientific community to adopt the most recent measurement 4H-SiC in future publications to make these values more prominently known and, thus, lead to a wider distribution.

Permittivity $(\varepsilon_{s}^{\parallel}, \varepsilon_{s}^{\perp} / \varepsilon_{\infty}^{\parallel}, \varepsilon_{\infty}^{\perp})$

Patrick and Choyke

[Patr70]⁵ (10.03, 9.66 / 6.7, 6.52) [Made91]⁶⁵ (10.03, 9.66 / 6.7, 6.52) - [Wenz95]⁶⁶ (-/-, 6.52) $[Pers97]^{11} (10.03, 9.66 / 6.7, 6.52)$ $[Pers99]^{61} (10.03, 9.66 / 6.7, 6.52)$ $[\text{Son04}]^{62}$ (10.03, 9.66 / 6.7, 6.52) [Harr95]¹² (10.3, 9.66 / 6.7, 6.52) [Choi05]⁶⁸ (9.7/-) [Neud06]⁶⁹ (9.7/-) [Zhu08]⁷⁰ (9.7/-) $[\text{Wije11}]^{71} (10/-)$ [Arvi17]¹⁴ (9.7/6.52) [Pear23]⁷² (9.7/-) [Casa96]⁷³ (9.66 / -) [Huan98]⁷⁴ (9.7/-) [Made96]⁷⁵ (10.03, 9.66 / 6.7, 6.52) [Lind98]⁴⁷ (10.03 , 9.66 / -) - [Bako97]⁶⁴ (10.03, 9.66/-) - [Egil99]⁷⁶ (9.7 / -) $- [Lade00]^{60} (10.03, 9.66 / -)$ $[\text{Lech21}]^{77} (9.66 / -)$ - [Pern01]⁴⁸ (9.78 / 6.58) - [Pern05]⁴⁹ (9.78 / 6.58) [Arpa06]⁷⁸ (10/-) $[\text{Koiz09}]^{50}$ (10.03, 9.66/6.7, 6.52) [Scab11a]⁷⁹ (9.78 / -) [Hata13]⁶³ (10.03 , 9.66 / -) [Naug17]⁸⁰ (10.03 , 9.66 / -) - [Arva17]⁸¹ (9.66 / -) [Chou21]⁸² (9.66/-) — [Yosh18]⁸³ (- , 9.7 / -) — [Micc19]⁸⁴ (9.66 / -) [Trip19]⁸⁵ (9.66 / -) [Klah20]⁸⁶ (10 / -) [Kova20]⁸⁷ (9.67 / 6.5) [Ioff23]⁸⁸ (10.03, 9.66 / 6.7, 6.52) [Acha17]⁸⁹ (8.5884/-) [Bane21]⁹⁰ (8.5884 / -) [Kim24]⁹¹ (9.7/6.52) Bhatnagar and Baliga [Bhat93]⁹² (9.7/-) Chow and Tyagi

[Chow93]⁹⁴ (9.945 / -)

[Weit96]⁹⁵ (9.7/-)

[Mork94]⁹⁶ (9.7/-) [Burk99]⁹⁷ (9.7/-) Ninomiya and Adachi [Nino94]³¹ (9.98 , 9.76 / 6.67 , 6.59) [Ayal04]⁹⁸ (9.98 , 9.76 / -) [Kimo19]⁵⁵ (10.32 , 9.76 / -) Harima, Nakashima, and Uemura [Hari95]¹⁵ (-/6.78, 6.56) [Hari98]¹⁶ (-/6.8) Sriram et al. [Srir97]⁹⁹ (9.7/-) [Han03]¹⁰⁰ (9.7/-) Mickevičius and Zhao [Mick98]¹⁰¹ (9.7/6.5) $[Zhao00]^{102} (9.7/6.5)$ [Aktu09]¹⁰³ (9.7/6.5) Troffer [Trof98]⁵⁸ (10.32 , 9.76 / -) [Zipp11]¹⁰⁴ (9.76/-) Weitzel [Weit98]¹⁰⁵ (9.7 / -) [Nava08]¹⁰⁶ (9.7/-) Wright et al. [Wrig98]¹⁰⁷ (9.7 / -) [Bali06]¹⁰⁸ (9.7/-) [Bali19]¹⁰⁹ (9.7/-) [Tsao18]¹¹⁰ (9.7/-) [Jiya20]¹¹¹ (9.7/-) Nilsson et al. [Nils99]¹¹² (-/-) $[\text{Bell00}]^{113}$ (10/6.7)

Morkoc et al.

 $[Bell00]^{113} (10/6.7)$ $[Vasc19]^{114} (10/6.7)$ $[Rodr21]^{115} (10/6.7)$

Chow

[Chow00]¹¹⁶ (10 / -) [Dhan10]¹¹⁷ (10 / -)

Elasser and Chow [Elas02]¹¹⁸ (10/-)

[Su10]¹¹⁹ (10 / -)

Zetterling [Zett02]¹²⁰ (10 / -)

 $[\text{Ostl11}]^{121} (10/-)$

Hjelm et al.

[Hjel03]⁹ (9.7/6.5) [Kova20]⁸⁷ (9.67/6.5)

Ivanov et al.

[Ivan06]²⁴ (9.93 / -) [Janz08]¹²² (10.36 , 9.55 / -)

Kaminski

[Kami09]¹²³ (9.7 / -) [Kami14]¹²⁴ (9.7 / -)

Buttay *et al.* [Butt11]¹²⁵ (10 / -) [Fuji15]¹²⁶ (10 / -)

Neudeck

[Neud13]¹²⁷ (9.7/-) [Hass18]¹²⁸ (9.7/-)

Higashiwaki et al.

[Higa14]¹²⁹ (9.7 / -) Liu15]¹³⁰ (9.7 / -)

Kimoto and Cooper

Coutinho et al.

[Cout17]²³ (10.65, 9.88 / -) [Torr22]¹³³ (10.65, 9.88 / -)

Pearton et al.

 $[Pear 18]^{134} (9.7/-) \\ [Sole 19]^{135} (9.7/-) \\ [Kim 24]^{91} (9.7/6.52)$

Li et al.

```
[Li23]<sup>27</sup> (10.27,-/-)
L___[Li23a]<sup>37</sup> (10.27,-/-)
```

FIG. 2. Reference chains found for the relative permittivity. Publications with blue background are not focused on 4H-SiC, while those in green are novel analyses on 4H-SiC.

FIG. 3. Published values for the static permittivity. Connected values indicated that at least one connection has been found. References with blue background indicate investigations of non-4H silicon carbide while green background denotes basic 4H-SiC investigations.

FIG. 4. Published values for the high-frequency permittivity. Connected values indicated that that at least one connection has been found. References with green background indicate investigations of non-4H silicon carbide while blue background denotes basic 4H-SiC investigations.

REFERENCES

- ¹V. Komarov, S. Wang, and J. Tang, in *Encyclopedia of RF and Microwave Engineering*, edited by K. Chang (Wiley, 2005) 1st ed.
- ²S. Adachi, *Properties of Group-IV, III-V and II-VI Semiconductors* (John Wiley, Chichester, England, 2005).
- ³J. Olivares, M. DeMiguel-Ramos, E. Iborra, M. Clement, T. Mirea, M. Moreira, and I. Katardjiev, in *2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC)* (IEEE, Prague, Czech Republic, 2013) pp. 118–121.
- ⁴W. Ching, Y.-N. Xu, P. Rulis, and L. Ouyang, Materials Science and Engineering: A **422**, 147 (2006).
- ⁵L. Patrick and W. J. Choyke, Physical Review B **2**, 2255 (1970).
- ⁶R. H. Lyddane, R. G. Sachs, and E. Teller, Physical Review **59**, 673 (1941).
- ⁷R. Ahuja, A. Ferreira Da Silva, C. Persson, J. M. Osorio-Guillén, I. Pepe, K. Järrendahl, O. P. A. Lindquist, N. V. Edwards, Q. Wahab, and B. Johansson, Journal of Applied Physics **91**, 2099 (2002).

- ⁸H. Iwata and K. M. Itoh, Journal of Applied Physics **89**, 6228 (2001).
- ⁹M. Hjelm, H.-E. Nilsson, A. Martinez, K. F. Brennan, and E. Bellotti, Journal of Applied Physics **93**, 1099 (2003).
- ¹⁰R. Mickevičius and J. H. Zhao, Materials Science Forum **264–268**, 291 (1998).
- ¹¹C. Persson and U. Lindefelt, Journal of Applied Physics 82, 5496 (1997).
- ¹²G. L. Harris and Inspec, eds., *Properties of Silicon Carbide*, EMIS Datareviews Series No. 13 (INSPEC, the Inst. of Electrical Engineers, London, 1995).
- ¹³M. E. Levinshteĭn, S. L. Rumyantsev, and M. Shur, eds., *Properties of Advanced Semiconduc*tor Materials: GaN, AlN, InN, BN, SiC, SiGe (Wiley, New York, 2001).
- ¹⁴I.-R. Arvinte, Investigation of Dopant Incorporation in Silicon Carbide Epilayers Grown by Chemical Vapor Deposition, Ph.D. thesis, Universite Cote d'Azur (2017).
- ¹⁵H. Harima, S.-i. Nakashima, and T. Uemura, Journal of Applied Physics **78**, 1996 (1995).
- ¹⁶H. Harima, T. Hosoda, and S. Nakashima, Materials Science Forum **264–268**, 449 (1998).
- ¹⁷D. W. Feldman, J. H. Parker, W. J. Choyke, and L. Patrick, *Physical Review* **173**, 787 (1968).
- ¹⁸K. Karch, F. Bechstedt, P. Pavone, and D. Strauch, Physical Review B 53, 13400 (1996).
- ¹⁹G. Wellenhofer, K. Karch, P. Pavone, U. Rössler, and D. Strauch, Physical Review B 53, 6071 (1996).
- ²⁰B. Adolph, K. Tenelsen, V. I. Gavrilenko, and F. Bechstedt, Physical Review B 55, 1422 (1997).
- ²¹X. Peng-Shou, X. Chang-Kun, P. Hai-Bin, and X. Fa-Qiang, Chinese Physics 13, 2126 (2004).
- ²²G. Pensl, F. Ciobanu, T. Frank, M. Krieger, S. Reshanov, F. Schmid, and M. Weidner, International Journal of High Speed Electronics and Systems 15, 705 (2005).
- ²³J. Coutinho, V. J. B. Torres, K. Demmouche, and S. Öberg, Physical Review B 96, 174105 (2017).
- ²⁴I. G. Ivanov, A. Stelmach, M. Kleverman, and E. Janzén, *Physical Review B* 73, 045205 (2006).
- ²⁵J. G. Hartnett, D. Mouneyrac, J. Krupka, J.-M. Le Floch, M. E. Tobar, and D. Cros, Journal of Applied Physics **109**, 064107 (2011).
- ²⁶C. R. Jones, J. Dutta, G. Yu, and Y. Gao, Journal of Infrared, Millimeter, and Terahertz Waves
 32, 838 (2011).
- ²⁷L. Li, S. Reyes, M. J. Asadi, X. Wang, G. Fabi, E. Ozdemir, W. Wu, P. Fay, and J. C. M. Hwang, in 2023 100th ARFTG Microwave Measurement Conference (ARFTG) (IEEE, Las Vegas, NV, USA, 2023) pp. 1–4.
- ²⁸M. Naftaly, J. F. Molloy, B. Magnusson, Y. M. Andreev, and G. V. Lanskii, Optics Express 24,

2590 (2016).

- ²⁹A. T. Tarekegne, B. Zhou, K. Kaltenecker, K. Iwaszczuk, S. Clark, and P. U. Jepsen, Optics Express **27**, 3618 (2019).
- ³⁰M.-m. Gao, L.-y. Fan, X.-y. Gong, J.-l. You, and Z.-z. Chen, Journal of Applied Physics **132**, 135702 (2022).
- ³¹S. Ninomiya and S. Adachi, Japanese Journal of Applied Physics **33**, 2479 (1994).
- ³²L. Cheng, J.-Y. Yang, and W. Zheng, ACS Applied Electronic Materials 4, 4140 (2022).
- ³³M. Ikeda, H. Matsunami, and T. Tanaka, Physical Review B 22, 2842 (1980).
- ³⁴Q. Yang, Q. Liu, W. Xu, D. Zhou, F. Ren, R. Zhang, Y. Zheng, and H. Lu, Solid-State Electronics 187, 108196 (2022).
- ³⁵J. M. Dutta, G. Yu, and C. R. Jones, in 2006 Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics (IEEE, Shanghai, China, 2006) pp. 411–411.
- ³⁶S. Chen, M. Afsar, and D. Sakdatorn, IEEE Transactions on Instrumentation and Measurement
 57, 706 (2008).
- ³⁷L. Li, S. Reyes, M. J. Asadi, P. Fay, and J. C. M. Hwang, Applied Physics Letters **123**, 012105 (2023).
- ³⁸T. Li, L. Li, X. Wang, J. C. M. Hwang, S. Yanagimoto, and Y. Yanagimoto, IEEE Journal of Microwaves, 1 (2024).
- ³⁹Y. Yanagimoto, S. Yanagimoto, T. Li, and J. C. M. Hwang, in 2024 103rd ARFTG Microwave Measurement Conference (ARFTG) (IEEE, Washington, DC, USA, 2024) pp. 1–4.
- ⁴⁰I. G. Ivanov, B. Magnusson, and E. Janzén, Physical Review B 67, 165211 (2003).
- ⁴¹I. G. Ivanov, B. Magnusson, and E. Janzén, Physical Review B **67**, 165212 (2003).
- ⁴²A. Agarwal, S.-H. Ryu, and J. Palmour, in *Silicon Carbide*, edited by W. J. Choyke, H. Matsunami, and G. Pensl (Springer Berlin Heidelberg, Berlin, Heidelberg, 2004) pp. 785–811.
- ⁴³D. Hofman, J. Lely, and J. Volger, Physica **23**, 236 (1957).
- ⁴⁴A. Schöner, in *Silicon Carbide*, edited by W. J. Choyke, H. Matsunami, and G. Pensl (Springer Berlin Heidelberg, Berlin, Heidelberg, 2004) pp. 229–250.
- ⁴⁵I. Polaert, N. Benamara, J. Tao, T.-H. Vuong, M. Ferrato, and L. Estel, Chemical Engineering and Processing: Process Intensification **122**, 339 (2017).
- ⁴⁶J. Chen, Z. H. Levine, and J. W. Wilkins, Physical Review B **50**, 11514 (1994).
- ⁴⁷U. Lindefelt, Journal of Applied Physics **84**, 2628 (1998).

- ⁴⁸J. Pernot, W. Zawadzki, S. Contreras, J. L. Robert, E. Neyret, and L. Di Cioccio, Journal of Applied Physics **90**, 1869 (2001).
- ⁴⁹J. Pernot, S. Contreras, and J. Camassel, Journal of Applied Physics **98**, 023706 (2005).
- ⁵⁰A. Koizumi, J. Suda, and T. Kimoto, Journal of Applied Physics **106**, 013716 (2009).
- ⁵¹H. Tanaka, S. Asada, T. Kimoto, and J. Suda, Journal of Applied Physics **123**, 245704 (2018).
- ⁵²C. Persson and A. Ferreira Da Silva, in *Optoelectronic Devices: III Nitrides* (Elsevier, 2005) pp. 479–559.
- ⁵³P. T. B. Shaffer, Applied Optics **10**, 1034 (1971).
- ⁵⁴T. Kimoto and J. A. Cooper, *Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications*, 1st ed. (Wiley, 2014).
- ⁵⁵T. Kimoto, in *Wide Bandgap Semiconductor Power Devices* (Elsevier, 2019) pp. 21–42.
- ⁵⁶S. Reshanov, *Device-Relevant Defect Centers and Minority Carrier Lifetime in 3C-, 4H- and 6H-SiC*, Ph.D. thesis, Erlangen-Nürnberg, Germany (2005).
- ⁵⁷M. Schadt, *Transporteigenschaften von Elektronen Und Löchern in Siliciumkarbid*, Ph.D. thesis, FriedrichAlexander-Universität (1997).
- ⁵⁸T. Troffer, *Elektrische Und Optische Charakterisierung Bauelementrelevanter Dotierstoffe in Siliciumkarbid*, Ph.D. thesis, FriedrichAlexander-Universität (1998).
- ⁵⁹N. W. Thibault, American Mineralogist **29**, 327 (1944), https://pubs.geoscienceworld.org/msa/ammin/article-pdf/29/9-10/327/4243453/am-1944-327.pdf.
- ⁶⁰M. Lades, *Modeling and Simulation of Wide Bandgap Semiconductor Devices: 4H/6H-SiC*, Ph.D. thesis, Technische Universität München (2000).
- ⁶¹C. Persson, U. Lindefelt, and B. E. Sernelius, Journal of Applied Physics **86**, 4419 (1999).
- ⁶²N. T. Son, C. Persson, U. Lindefelt, W. M. Chen, B. K. Meyer, D. M. Hofmann, and E. Janzén, in *Silicon Carbide*, edited by W. J. Choyke, H. Matsunami, and G. Pensl (Springer Berlin Heidelberg, Berlin, Heidelberg, 2004) pp. 437–460.
- ⁶³T. Hatakeyama, K. Fukuda, and H. Okumura, IEEE Transactions on Electron Devices **60**, 613 (2013).
- ⁶⁴M. Bakowski, U. Gustafsson, and U. Lindefelt, physica status solidi (a) 162, 421 (1997).
- ⁶⁵O. Madelung and R. Poerschke, eds., *Semiconductors: Group IV Elements and III-V Compounds*, Data in Science and Technology (Springer Berlin Heidelberg, Berlin, Heidelberg, 1991).

- ⁶⁶B. Wenzien, P. Käckell, F. Bechstedt, and G. Cappellini, Physical Review B 52, 10897 (1995).
- ⁶⁷P. Neudeck, in *Encyclopedia of Materials: Science and Technology* (Elsevier, 2001) pp. 8508– 8519.
- ⁶⁸Y. Choi, H.-Y. Cha, L. Eastman, and M. Spencer, IEEE Transactions on Electron Devices **52**, 1940 (2005).
- ⁶⁹P. G. Neudeck (2006).
- ⁷⁰X. Zhu, ALTERNATIVE GROWTH AND INTERFACE PASSIVATION TECHNIQUES FOR SiO2 ON 4H-SiC, Ph.D. thesis, Auburn University (2008).
- ⁷¹M. B. Wijesundara and R. Azevedo, *Silicon Carbide Microsystems for Harsh Environments*, MEMS Reference Shelf, Vol. 22 (Springer New York, New York, NY, 2011).
- ⁷²S. J. Pearton, X. Xia, F. Ren, M. A. J. Rasel, S. Stepanoff, N. Al-Mamun, A. Haque, and D. E. Wolfe, Journal of Vacuum Science & Technology B 41, 030802 (2023).
- ⁷³J. Casady and R. Johnson, Solid-State Electronics **39**, 1409 (1996).
- ⁷⁴M. Huang, N. Goldsman, C.-H. Chang, I. Mayergoyz, J. M. McGarrity, and D. Woolard, Journal of Applied Physics 84, 2065 (1998).
- ⁷⁵O. Madelung, ed., *Semiconductors Basic Data* (Springer Berlin Heidelberg, Berlin, Heidelberg, 1996).
- ⁷⁶T. Egilsson, J. P. Bergman, I. G. Ivanov, A. Henry, and E. Janzén, Physical Review B **59**, 1956 (1999).
- ⁷⁷B. Lechner, *Behaviour of 4H-SiC Power Semiconductor Devices under Extreme Operating Conditions*, Ph.D. thesis, Technische Universität München (2021).
- ⁷⁸N. Arpatzanis, A. Tsormpatzoglou, C. A. Dimitriadis, K. Zekentes, N. Camara, and M. Godlewski, physica status solidi (a) 203, 2551 (2006).
- ⁷⁹R. . Scaburri, (2011), 10.6092/UNIBO/AMSDOTTORATO/3924.
- ⁸⁰A. Naugarhiya, P. Wakhradkar, P. N. Kondekar, G. C. Patil, and R. M. Patrikar, Journal of Computational Electronics 16, 190 (2017).
- ⁸¹A. Arvanitopoulos, N. Lophitis, S. Perkins, K. N. Gyftakis, M. Belanche Guadas, and M. Antoniou, in 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED) (IEEE, Tinos, Greece, 2017) pp. 565–571.
- ⁸²R. Choudhary, M. Mehta, R. Singh Shekhawat, S. Singh, and D. Singh, Materials Today:
 Proceedings 46, 5889 (2021).
- ⁸³H. Yoshioka and K. Hirata, AIP Advances 8, 045217 (2018).

- ⁸⁴C. Miccoli and F. Iucolano, Materials Science in Semiconductor Processing **97**, 40 (2019).
- ⁸⁵S. Tripathi, C. Upadhyay, C. Nagaraj, A. Venkatesan, and K. Devan, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment **916**, 246 (2019).
- ⁸⁶W. M. Klahold, W. J. Choyke, and R. P. Devaty, Physical Review B **102**, 205203 (2020).
- ⁸⁷A. Kovalchuk, J. Wozny, Z. Lisik, J. Podgorski, L. Ruta, A. Kubiak, and A. Boiadzhian, Journal of Physics: Conference Series **1534**, 012006 (2020).
- ⁸⁸I. Institute, "Silicon Carbide," http://www.ioffe.ru/SVA/NSM/Semicond/SiC/index.html.
- ⁸⁹A. Acharyya, Applied Physics A **123**, 629 (2017).
- ⁹⁰S. Banerjee, in *Advances in Terahertz Technology and Its Applications*, edited by S. Das, N. Anveshkumar, J. Dutta, and A. Biswas (Springer Singapore, Singapore, 2021) pp. 153–172.
- ⁹¹H. Kim, Transactions on Electrical and Electronic Materials **25**, 141 (2024).
- ⁹²M. Bhatnagar and B. Baliga, IEEE Transactions on Electron Devices **40**, 645 (1993).
- ⁹³C. Codreanu, M. Avram, E. Carbunescu, and E. Iliescu, Materials Science in Semiconductor Processing 3, 137 (2000).
- ⁹⁴T. Chow and R. Tyagi, in [1993] Proceedings of the 5th International Symposium on Power Semiconductor Devices and ICs (IEEE, Monterey, CA, USA, 1993) pp. 84–88.
- ⁹⁵C. Weitzel, J. Palmour, C. Carter, K. Moore, K. Nordquist, S. Allen, C. Thero, and M. Bhatnagar, IEEE Transactions on Electron Devices 43, 1732 (Oct./1996).
- ⁹⁶H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, Journal of Applied Physics **76**, 1363 (1994).
- ⁹⁷A. Burk, M. O'Loughlin, R. Siergiej, A. Agarwal, S. Sriram, R. Clarke, M. MacMillan, V. Balakrishna, and C. Brandt, Solid-State Electronics 43, 1459 (1999).
- ⁹⁸T. Ayalew, SiC Semiconductor Devices Technology, Modeling, and Simulation, Ph.D. thesis, TU Wien (2004).
- ⁹⁹S. Sriram, R. R. Siergiej, R. C. Clarke, A. K. Agarwal, and C. D. Brandt, physica status solidi (a) **162**, 441 (1997).
- ¹⁰⁰R. Han, X. Xu, X. Hu, N. Yu, J. Wang, Y. Tian, and W. Huang, Optical Materials **23**, 415 (2003).
- ¹⁰¹R. Mickevičius and J. H. Zhao, Journal of Applied Physics 83, 3161 (1998).
- ¹⁰²J. H. Zhao, V. Gruzinskis, Y. Luo, M. Weiner, M. Pan, P. Shiktorov, and E. Starikov, Semiconductor Science and Technology 15, 1093 (2000).

- ¹⁰³A. Akturk, N. Goldsman, S. Potbhare, and A. Lelis, Journal of Applied Physics **105**, 033703 (2009).
- ¹⁰⁴B. Zippelius, *Elektrische Charakterisierung Bauelement-relevanter Defekte in 3C- Und 4H-Siliziumkarbid*, Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2011).
- ¹⁰⁵C. Weitzel, Materials Science Forum **264–268**, 907 (1998).
- ¹⁰⁶F. Nava, G. Bertuccio, A. Cavallini, and E. Vittone, Measurement Science and Technology 19, 102001 (2008).
- ¹⁰⁷N. G. Wright, D. Morrison, C. M. Johnson, and A. G. O'Neill, Materials Science Forum 264–268, 917 (1998).
- ¹⁰⁸B. J. Baliga, *Silicon Carbide Power Devices* (WORLD SCIENTIFIC, 2006).
- ¹⁰⁹B. J. Baliga, *Fundamentals of Power Semiconductor Devices* (Springer International Publishing, Cham, 2019).
- ¹¹⁰J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van De Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, Advanced Electronic Materials 4, 1600501 (2018).
- ¹¹¹I. N. Jiya and R. Gouws, Micromachines **11**, 1116 (2020).
- ¹¹²H.-E. Nilsson, E. Bellotti, M. Hjelm, K. F. Brennan, and C. Petersson, Proceedings of the IMACS Conference, Sofia, Bulgaria, June 1999 (1999).
- ¹¹³E. Bellotti, H.-E. Nilsson, K. F. Brennan, P. P. Ruden, and R. Trew, Journal of Applied Physics87, 3864 (2000).
- ¹¹⁴J. L. Vasconcelos, C. G. Rodrigues, and R. Luzzi, Materials Science and Engineering: B **249**, 114426 (2019).
- ¹¹⁵C. G. Rodrigues, Semiconductors **55**, 625 (2021).
- ¹¹⁶T. P. Chow, Materials Science Forum **338–342**, 1155 (2000).
- ¹¹⁷G. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley, eds., *Springer Handbook of Crystal Growth* (Springer Berlin Heidelberg, Berlin, Heidelberg, 2010).
- ¹¹⁸A. Elasser and T. Chow, Proceedings of the IEEE **90**, 969 (2002).
- ¹¹⁹M. Su, (2010), 10.7282/T37944SV.
- ¹²⁰C.-M. Zetterling, ed., Process Technology for Silicon Carbide Devices, EMIS Processing Series

No. 2 (Institution of Electrical Engineers, London, 2002).

- ¹²¹M. Östling, Science China Information Sciences **54**, 1087 (2011).
- ¹²²E. Janzén, A. Gali, A. Henry, I. G. Ivanov, B. Magnusson, and N. T. Son, in *Defects in Micro*electronic Materials and Devices (2008) pp. 615–669.
- ¹²³N. Kaminski, 2009 13th European Conference on Power Electronics and Applications 8 (2009).
- ¹²⁴N. Kaminski and O. Hilt, IET Circuits, Devices & Systems 8, 227 (2014).
- ¹²⁵C. Buttay, D. Planson, B. Allard, D. Bergogne, P. Bevilacqua, C. Joubert, M. Lazar, C. Martin, H. Morel, D. Tournier, and C. Raynaud, Materials Science and Engineering: B 176, 283 (2011).
- ¹²⁶S. Fujita, Japanese Journal of Applied Physics **54**, 030101 (2015).
- ¹²⁷P. G. Neudeck, in *Extreme Environment Electronics* (CRC Press, Taylor & Francis Group, 2013) pp. 225–232.
- ¹²⁸A. Hassan, Y. Savaria, and M. Sawan, IEEE Access **6**, 78790 (2018).
- ¹²⁹M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, physica status solidi
 (a) 211, 21 (2014).
- ¹³⁰G. Liu, B. R. Tuttle, and S. Dhar, Applied Physics Reviews 2, 021307 (2015).
- ¹³¹S. Rybalka, E.Yu. Krayushkina, A. Demidov, O. Shishkina, and B. Surin, International Journal of Physical Research **5**, 11 (2017).
- ¹³²C. Darmody and N. Goldsman, Journal of Applied Physics **126**, 145701 (2019).
- ¹³³V. J. B. Torres, I. Capan, and J. Coutinho, Physical Review B 106, 224112 (2022).
- ¹³⁴S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, Applied Physics Reviews 5, 011301 (2018).
- ¹³⁵V. Soler, *Design and Process Developments towards an Optimal 6.5 kV SiC Power MOSFET*,
 Ph.D. thesis, Universitat Politecnica de Catalunya (2019).
- ¹³⁶M. Yoder, IEEE Transactions on Electron Devices **43**, 1633 (Oct./1996).
- ¹³⁷S. Rao, E. D. Mallemace, and F. G. Della Corte, Electronics 11, 1839 (2022).
- ¹³⁸G. Sozzi, M. Puzzanghera, R. Menozzi, and R. Nipoti, IEEE Transactions on Electron Devices
 66, 3028 (2019).
- ¹³⁹R. Nipoti, G. Sozzi, M. Puzzanghera, and R. Menozzi, MRS Advances 1, 3637 (2016).
- ¹⁴⁰M. Usman and M. Nawaz, Solid-State Electronics **92**, 5 (2014).
- ¹⁴¹F. Pezzimenti, IEEE Transactions on Electron Devices **60**, 1404 (2013).
- ¹⁴²S. Bellone, F. G. Della Corte, L. F. Albanese, and F. Pezzimenti, IEEE Transactions on Power Electronics 26, 2835 (2011).

- ¹⁴³D. Schröder, *Leistungselektronische Bauelemente* (Springer Berlin Heidelberg, Berlin, Heidelberg, 2006).
- ¹⁴⁴X. Dong, M. Huang, Y. Ma, C. Fu, M. He, Z. Yang, Y. Li, and M. Gong, IEEE Transactions on Nuclear Science, 1 (2024).
- ¹⁴⁵T. Yang, C. Fu, W. Song, Y. Tan, S. Xiao, C. Wang, K. Liu, X. Zhang, and X. Shi, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment **1056**, 168677 (2023).
- ¹⁴⁶T. Yang, Y. Tan, C. Wang, X. Zhang, and X. Shi, "Simulation of the 4H-SiC Low Gain Avalanche Diode," (2022), arXiv:2206.10191 [physics].
- ¹⁴⁷M. De Napoli, Frontiers in Physics **10**, 898833 (2022).
- ¹⁴⁸M. Cabello, V. Soler, G. Rius, J. Montserrat, J. Rebollo, and P. Godignon, Materials Science in Semiconductor Processing 78, 22 (2018).
- ¹⁴⁹Q. Chen, L. Yang, S. Wang, Y. Zhang, Y. Dai, and Y. Hao, Applied Physics A 118, 1219 (2015).
- ¹⁵⁰H. A. Mantooth, in *Extreme Environment Electronics* (CRC Press, Taylor & Francis Group, 2013) pp. 243–252.
- ¹⁵¹L. F. Albanese, *Characterization, Modeling and Simulation of 4H-SiC Power Diodes*, Ph.D. thesis, UniversitàdegliStudidiSalerno (2010).
- ¹⁵²P. Bhatnagar, A. B. Horsfall, N. G. Wright, C. M. Johnson, K. V. Vassilevski, and A. G. O'Neill, Solid-State Electronics 49, 453 (2005).
- ¹⁵³M. W. Cole and P. Joshi, in *Silicon Carbide*, edited by Z. C. Feng and J. H. Zhao (Springer Berlin Heidelberg, Berlin, Heidelberg, 2004) pp. 517–536.
- ¹⁵⁴H. Iwata and K. M. Itoh, Materials Science Forum **338–342**, 729 (2000).
- ¹⁵⁵H. Iwata, K. M. Itoh, and G. Pensl, Journal of Applied Physics 88, 1956 (2000).
- ¹⁵⁶N. Wright, in *IEE Colloquium on New Developments in Power Semiconductor Devices*, Vol. 1996 (IEE, London, UK, 1996) pp. 6–6.
- ¹⁵⁷H.-E. Nilsson, U. Sannemo, and C. S. Petersson, Journal of Applied Physics 80, 3365 (1996).
- ¹⁵⁸I. Neila Inglesias, "APPLYING NUMERICAL SIMULATION TO MODELS SiC SEMICON-DUCTOR DEVICES," (2012).
- ¹⁵⁹T. Kimoto, Japanese Journal of Applied Physics **54**, 040103 (2015).
- ¹⁶⁰J. Zhao, X. Li, K. Tone, P. Alexandrov, M. Pan, and M. Weiner, Solid-State Electronics 47, 377 (2003).
- ¹⁶¹A. Elasser, M. Kheraluwala, M. Ghezzo, R. Steigerwald, N. Evers, J. Kretchmer, and T. Chow,

IEEE Transactions on Industry Applications 39, 915 (2003).

- ¹⁶²A. Elasser, M. Ghezzo, N. Krishnamurthy, J. Kretchmer, A. Clock, D. Brown, and T. Chow, Solid-State Electronics 44, 317 (2000).
- ¹⁶³V. Chelnokov and A. Syrkin, Materials Science and Engineering: B 46, 248 (1997).
- ¹⁶⁴F. L. L. Nouketcha, Y. Cui, A. Lelis, R. Green, C. Darmody, J. Schuster, and N. Goldsman, IEEE Transactions on Electron Devices 67, 3999 (2020).
- ¹⁶⁵A. A. Lebedev, *Radiation Effects in Silicon Carbide*, Materials Research Foundations No. volume 6 (2017) (Materials Research Forum LLC, Millersville, PA, USA, 2017).
- ¹⁶⁶T. P. Chow, I. Omura, M. Higashiwaki, H. Kawarada, and V. Pala, IEEE Transactions on Electron Devices **64**, 856 (2017).
- ¹⁶⁷J. A. Pellish and L. M. Cohn, in *Extreme Environment Electronics* (CRC Press, Taylor & Francis Group, 2013) pp. 49–58.
- ¹⁶⁸S. M. Sze and K. K. Ng, *Physics of Semiconductor Devices*, 3rd ed. (Wiley-Interscience, Hoboken, N.J, 2007).
- ¹⁶⁹J. Millán, IET Circuits, Devices & Systems 1, 372 (2007).
- ¹⁷⁰A. Pérez-Tomás, P. Brosselard, P. Godignon, J. Millán, N. Mestres, M. R. Jennings, J. A. Covington, and P. A. Mawby, Journal of Applied Physics **100**, 114508 (2006).
- ¹⁷¹T. P. Chow, N. Ramungul, J. Fedison, and Y. Tang, in *Silicon Carbide*, edited by W. J. Choyke, H. Matsunami, and G. Pensl (Springer Berlin Heidelberg, Berlin, Heidelberg, 2004) pp. 737–767.
- ¹⁷²N. Zhang, *High Voltage GaN HEMTs with Low On-Resistance for Switching Applications*, Ph.D. thesis, UNIVERSITY of CALIFORNIA, Santa Barbara (2002).
- ¹⁷³R. Trew, Proceedings of the IEEE **90**, 1032 (2002).
- ¹⁷⁴S. K. Lee, *Processing and Characterization of Silicon Carbide (6H-SiC and 4H-SiC) Contacts* for High Power and h... (Mikroelektronik och informationsteknik, Kista, 2002).
- ¹⁷⁵R. Kemerley, H. Wallace, and M. Yoder, Proceedings of the IEEE **90**, 1059 (2002).
- ¹⁷⁶V. Dmitriev, T. P. Chow, S. P. DenBaars, M. S. Shur, and M. G. Spencer, "High-Temperature Electronics in Europe:," Tech. Rep. (Defense Technical Information Center, Fort Belvoir, VA, 2000).
- ¹⁷⁷T. Chow, V. Khemka, J. Fedison, N. Ramungul, K. Matocha, Y. Tang, and R. Gutmann, Solid-State Electronics **44**, 277 (2000).
- ¹⁷⁸C. M. Zetterling, M. Östling, C. I. Harris, N. Nordell, K. Wongchotigul, and M. G. Spencer,

Materials Science Forum 264–268, 877 (1998).

- ¹⁷⁹P. B. Shah and K. A. Jones, Journal of Applied Physics 84, 4625 (1998).
- ¹⁸⁰M. Roschke, F. Schwierz, G. Paasch, and D. Schipanski, Materials Science Forum **264–268**, 965 (1998).
- ¹⁸¹E. Danielsson, C. I. Harris, C. M. Zetterling, and M. Östling, Materials Science Forum 264–268, 805 (1998).
- ¹⁸²T. P. Chow, N. Ramungul, and M. Ghezzo, MRS Proceedings 483, 89 (1997).
- ¹⁸³T. P. Chow and M. Ghezzo, MRS Proceedings 423, 9 (1996).
- ¹⁸⁴B. Ozpineci, "Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications," Tech. Rep. ORNL/TM-2003/257, 885849 (2004).